P1072 HanksonHankson 的趣味题
题意:给定$a_0,a_1,b_0,b_1$
问有多少x满足1:$gcd(x,a_0)=a_1$
2:$lcm(x,b_0)=b_1$
思路:暴力枚举(当然不是死枚举)
枚举$a_1$的倍数,判断。。
然而,,,,50分+TLE
正解:
首先:对于已知:1:$gcd(x,a_0)=a_1$得
$gcd(\frac{x}{a_1},\frac{a_0}{a_1})=1$
2:$lcm(x,b_0)=b_1$ 可得
$gcd(x,b_0)=x*\frac{b_0}{lcm(x,b_0)}=x*\frac{b_0}{b_1}$
所以:$gcd(\frac{x}{\frac{x*b_0}{b_1}},\frac{b_0}{\frac{x*b_0}{b_1}})=1$
化简得:$gcd(\frac{b_1}{b_0},\frac{b_1}{x})=1$
整理一下: $\left\{\begin{aligned}gcd(\frac{x}{a_1},\frac{a_0}{a_1})=1\\gcd(\frac{b_1}{b_0},\frac{b_1}{x})=1\end{aligned}\right.$
所以: x 是 $a_1$ 的整数倍而且是$b_1$的因子
做法:$O(\sqrt{b_1})$枚举 $b_1$ 的因子(也就是 x),如果这个数是 $a_1$ 的整数倍并且满足那两个式子,则 ans++
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
#define olinr return
#define love_nmr 0
#define _ 0
int n;
int a0,a1,b0,b1;
int ans;
inline int gcd(int x,int y)
{
return y? gcd(y,x%y):x;
}
signed main()
{
scanf("%d",&n);
while(n--)
{
ans=;
scanf("%d%d%d%d",&a0,&a1,&b0,&b1);
int A=a0/a1;
int B=b1/b0;
for(int i=;i*i<=b1;i++)
{
if(b1%i==)
{
if(i%a1==&&gcd(i/a1,A)==&&gcd(b1/i,B)==) ans++;
int ano=b1/i;
if(ano==i) continue;
if(ano%a1==&&gcd(ano/a1,A)==&&gcd(b1/ano,B)==) ans++;
}
}
printf("%d\n",ans);
}
olinr ~~(^_^)+love_nmr;
}
P1072 HanksonHankson 的趣味题的更多相关文章
- 洛谷 P1072 Hankson 的趣味题 解题报告
P1072 \(Hankson\)的趣味题 题目大意:已知有\(n\)组\(a0,a1,b0,b1\),求满足\((x,a0)=a1\),\([x,b0]=b1\)的\(x\)的个数. 数据范围:\( ...
- luogu P1072 Hankson的趣味题
题目链接 luogu P1072 Hankson 的趣味题 题解 啊,还是noip的题好做 额,直接推式子就好了 \(gcd(x,a_0)=a_1=gcd(\frac{x}{a_1},\frac{a_ ...
- 洛谷P1072 Hankson 的趣味题
P1072 Hankson 的趣味题 题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一 ...
- Java实现洛谷 P1072 Hankson 的趣味题
P1072 Hankson 的趣味题 输入输出样例 输入 2 41 1 96 288 95 1 37 1776 输出 6 2 PS: 通过辗转相除法的推导 import java.util.*; cl ...
- 洛谷P1072 Hankson 的趣味题(题解)
https://www.luogu.org/problemnew/show/P1072(题目传送) 数学的推理在编程的体现越来越明显了.(本人嘀咕) 首先,我们知道这两个等式: (a0,x)=a1,[ ...
- 洛谷P1072 Hankson的趣味题
这是个NOIP原题... 题意: 给定 a b c d 求 gcd(a, x) = b && lcm(c, x) = d 的x的个数. 可以发现一个朴素算法是从b到d枚举,期望得分50 ...
- 【题解】洛谷P1072 Hankson的趣味题 (gcd和lcm的应用)
洛谷P1072:https://www.luogu.org/problemnew/show/P1072 思路 gcd(x,a0)=a1 lcm(x,b0)=b1→b0*x=b1*gcd(x,b0) ( ...
- 洛谷 P1072 Hankson 的趣味题
题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现 在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲 ...
- 洛谷 - P1072 Hankson - 的趣味题 - 质因数分解
https://www.luogu.org/problemnew/show/P1072 一开始看了一看居然还想放弃了的. 把 \(x,a_0,a_1,b_0,b_1\) 质因数分解. 例如 \(x=p ...
随机推荐
- Echarts 关系图 添加点击事件
/*实现的效果是:在关系图上加点击事件,点击某个点,得到改点代表的内容,并且实现一个跳转效果. 关键代码已用红色标出*/ <!DOCTYPE html> <html lang=&qu ...
- bzoj1208Splay
Splay查前驱后继 小tips:在bzoj上while(scanf)这种东西可以让程序多组数据一起跑 反正没加我就t了 #include<cstdio> #include<iost ...
- [SDOI 2017] 序列计数
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=4818 [算法] 考虑容斥 , 用有至少有一个质数的合法序列数 - 没有质数的合法序列 ...
- DevExpress源码编译总结
独家提供完整可编译sln文件,本篇文章内容包括基础知识(GAC.程序集强签名.友元程序集).编译过程.注册GAC.添加工具箱.多语言支持.运行时和设计时调试 源码地址 链接:http://pan.b ...
- 【转】 Pro Android学习笔记(七五):HTTP服务(9):DownloadManager
目录(?)[-] 小例子 保存在哪里下载文件信息设置和读取 查看下载状态和取消下载 文章转载只能用于非商业性质,且不能带有虚拟货币.积分.注册等附加条件,转载须注明出处:http://blog.csd ...
- JAVA 1.5 并发之 ReentrantLock
在文章里我不打算具体讲Lock的实现,对此有兴趣的请点击这篇博文 http://www.blogjava.net/BucketLi/archive/2010/09/30/333471.html 我是一 ...
- 一个能获取如果hash或search是中文的内容小例子
代码: (function () { var url = "http//baidu.com#a=你好&b=world"; var url1 = "http//ba ...
- 在python3.6下 发明一个类似python3.7 dataclass数据类,不用在 __init__中self.xx
虽然我用3.6,但我在2.7转3.6时候,把3.3 3.4 3.5 3.6的变化都看了一次,虽然已经忘了哪些变化.同时也关注3.7 3.8的变化,3.7中就有1个数据类印象深刻,因为之前在定义这种类时 ...
- 问题:OAuth2.0;结果:帮你深入理解OAuth2.0协议
1. 引言 如果你开车去酒店赴宴,你经常会苦于找不到停车位而耽误很多时间.是否有好办法可以避免这个问题呢?有的,听说有一些豪车的车主就不担心这个问题. 豪车一般配备两种钥匙:主钥匙和泊车钥匙.当你到酒 ...
- 你做电商死法TOP10:你中了几枪?
有相关报道说淘宝目前只有3%的店铺能够盈利,其余97%的店铺基本上都成了炮灰.这是一个非常可怕的数字,都说不赚钱的电商是犯罪,那么,是什么原因导致了会有如此庞大的电商群体一如既往的走在这千军万马的不归 ...