题目链接: http://codeforces.com/problemset/problem/785/D

题意: 左边全为 '(' 右边全为 ')' 且两者数量想等的字符串称为 RSBS. 给出一个由 '(' 和 ')' 组成的字符串, 问其有多少子序列是 RSBS.

思路: 可以先预处理一下, 用 a[i] 记录 i 前面(包括 i 这个位置)的 '(' 的数目, b[i] 记录 i 后面(包括 i 这个位置)的 ')' 的数目, 然后从左往右枚举以 '(' 结尾的情况,

那么当前情况下的 RSBS 数目为:

C(a[i] - 1, 0) * C(b[i], 1) + C(a[i] - 1, 1) * C(b[i], 2) + C(a[i] - 1, 2) * C(b[i], 3) + ...

= ∑min(a-1, b-1)0  C(a - 1, x) * C(b, x + 1)

= ∑min(a-1, b-1)0  C(a - 1, a - 1 - x) * C(b, x + 1)

= C(a - 1 + b, a) (范德蒙恒等式)

然后将所有情况的 RSBS 数目累加一下就好啦.

注意这里的组合数比较大, 取模的话需要用到 exgcd 或者 快速幂.

代码1: 快速幂求组合数取模 C(n, m) % mode = (n! % mode) * get_pow((n - m)! * m! % mode, mode - 2) % mode. (这个公式能通过费马小定理变换得到).

 #include <iostream>
#define ll long long
using namespace std; const int mode = 1e9 + ;
const int MAXN = 2e5 + ;
ll a[MAXN], b[MAXN], gel[MAXN];
string s; ll get_pow(ll x, int n){
ll ans = ;
while(n){
if(n & ) ans = ans * x % mode;
x = x * x % mode;
n >>= ;
}
return ans;
} int main(void){
ll ans = ;
cin >> s;
if(s[] == '(') a[] = ;
for(int i = ; i < s.size(); i++){
if(s[i] == '(') a[i] = a[i - ] + ;
else a[i] = a[i - ];
}
for(int i = s.size() - ; i >= ; i--){
if(s[i] == ')') b[i] = b[i + ] + ;
else b[i] = b[i + ];
}
gel[] = ;
for(int i = ; i < MAXN; i++){
gel[i] = gel[i - ] * i % mode;
}
for(int i = ; i < s.size(); i++){
if(s[i] == ')') continue;
ll cnt1 = a[i], cnt2 = a[i] + b[i] - ;
ans = (ans + (gel[cnt2] * get_pow(gel[cnt1] * gel[cnt2 - cnt1] % mode, mode - )) % mode) % mode;
}
cout << ans << endl;
return ;
}

代码2: 用乘法逆元求得组合数取模

 #include <iostream>
#define ll long long
using namespace std; const int mode = 1e9 + ;
const int MAXN = 2e5 + ;
ll a[MAXN], b[MAXN], gel[MAXN];
string s; void exgcd(ll a, ll b, ll &x, ll &y){
if(!b){
y = ;
x = ;
return;
}
exgcd(b, a % b, y, x);
y -= a / b * x;
} int main(void){
ll ans = ;
cin >> s;
if(s[] == '(') a[] = ;
for(int i = ; i < s.size(); i++){
if(s[i] == '(') a[i] = a[i - ] + ;
else a[i] = a[i - ];
}
for(int i = s.size() - ; i >= ; i--){
if(s[i] == ')') b[i] = b[i + ] + ;
else b[i] = b[i + ];
}
gel[] = ;
for(int i = ; i < MAXN; i++){
gel[i] = gel[i - ] * i % mode;
}
for(int i = ; i < s.size(); i++){
if(s[i] == ')') continue;
ll cnt1 = a[i], cnt2 = a[i] + b[i] - ;
ll cc1 = gel[cnt2], cc2 = gel[cnt2 - cnt1] * gel[cnt1] % mode;
ll x, y;
exgcd(cc2, mode, x, y);
x = (x % mode + mode) % mode;
ans = (ans + (cc1 * x) % mode) % mode; }
cout << ans << endl;
return ;
}

cf785D(组合数学)的更多相关文章

  1. poj 3734 Blocks 快速幂+费马小定理+组合数学

    题目链接 题意:有一排砖,可以染红蓝绿黄四种不同的颜色,要求红和绿两种颜色砖的个数都是偶数,问一共有多少种方案,结果对10007取余. 题解:刚看这道题第一感觉是组合数学,正向推了一会还没等推出来队友 ...

  2. 组合数学or not ---- n选k有重

    模板问题: 1. 取物品 (comb.pas/c/cpp) [问题描述] 现在有n个物品(有可能相同),请您编程计算从中取k个有多少种不同的取法.[输入] 输入文件有两行,第一行包含两个整数n,k(2 ...

  3. 组合数学(全排列)+DFS CSU 1563 Lexicography

    题目传送门 /* 题意:求第K个全排列 组合数学:首先,使用next_permutation 函数会超时,思路应该转变, 摘抄网上的解法如下: 假设第一位是a,不论a是什么数,axxxxxxxx一共有 ...

  4. uestc1888 Birthday Party    组合数学,乘法原理

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=25539#problem/G 题目意思: 有n个人,每个人有一个礼物,每个人能拿 ...

  5. UVA 11076 Add Again 计算对答案的贡献+组合数学

    A pair of numbers has a unique LCM but a single number can be the LCM of more than one possiblepairs ...

  6. POJ3252——Round Number(组合数学)

    Round Numbers DescriptionThe cows, as you know, have no fingers or thumbs and thus are unable to pla ...

  7. HDU4675【GCD of scequence】【组合数学、费马小定理、取模】

    看题解一开始还有地方不理解,果然是我的组合数学思维比较差 然后理解了之后自己敲了一个果断TLE.... 我以后果然还得多练啊 好巧妙的思路啊 知识1: 对于除法取模还需要用到费马小定理: a ^ (p ...

  8. hdu 4810 Wall Painting (组合数学+二进制)

    题目链接 下午比赛的时候没有想出来,其实就是int型的数分为30个位,然后按照位来排列枚举. 题意:求n个数里面,取i个数异或的所有组合的和,i取1~n 分析: 将n个数拆成30位2进制,由于每个二进 ...

  9. CCF 201312-4 有趣的数 (数位DP, 状压DP, 组合数学+暴力枚举, 推公式, 矩阵快速幂)

    问题描述 我们把一个数称为有趣的,当且仅当: 1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次. 2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前. 3. 最高 ...

随机推荐

  1. windows 批处理ping ip

    //pingSingleIp ;;@Echo off @for /f "tokens=1-4 delims=." %%i in (ip.txt) do (@ping -w 600 ...

  2. linux-常用指令1

    掌握下面的命令是最基本的噢!那是我们使用一个系统最基本的操作. 玩过dos么,其实,linux下的文件操作和dos差不多.没什么难的,多练习就记住了.下面如果有条件的话请跟我一样操作吧!百看不如一做. ...

  3. codeforces 627B B. Factory Repairs(线段树)

    B. Factory Repairs time limit per test 4 seconds memory limit per test 256 megabytes input standard ...

  4. codeforces 622D D. Optimal Number Permutation(找规律)

    D. Optimal Number Permutation time limit per test 1 second memory limit per test 256 megabytes input ...

  5. 基于无锁的C#并发队列实现

    最近开始学习无锁编程,和传统的基于Lock的算法相比,无锁编程具有其独特的优点,Angel Lucifer的关于无锁编程一文对此有详细的描述. 无锁编程的目标是在不使用Lock的前提下保证并发过程中共 ...

  6. [转]JS中apply和call的联系和区别

    JS中有时常用到 apply 和 call 两个方法,搜索网上很多,整理如下,简单看看这两个联系和区别, 联系: 网上查到关于apply和call的定义:这两个方法都能劫持另外一个对象的方法,继承另外 ...

  7. Python命令模块argparse学习笔记(四)

    默认参数 ArgumentParser.set_defaults(**kwargs) set_defaults()可以设置一些参数的默认值 >>> parser = argparse ...

  8. Python函数(十二)-迭代器

    字符串,列表,元组,字典,集合,生成器这些能通过for循环来遍历的数据类型都是可迭代对象 可通过isinstance判断是不是可迭代对象 >>> from collections i ...

  9. 第七篇 elasticsearch 链接mysql不会更新

    这是我键的索引 "settings":{ "number_of_shards":3, "number_of_replicas":2 }, & ...

  10. eclipse 远程操作HIVE

    首先启动HiveServer hive --service hiveserver 10000 & 创建工程 引入包: 代码(简单的查询): package com.hive.jdbc; imp ...