【BZOJ1778】[Usaco2010 Hol]Dotp 驱逐猪猡

Description

奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡。猪猡的文明包含1到N (2 <= N <= 300)一共N个猪城。这些城市由M (1 <= M <= 44,850)条由两个不同端点A_j和B_j (1 <= A_j<= N; 1 <= B_j <= N)表示的双向道路连接。保证城市1至少连接一个其它的城市。一开始臭气弹会被放在城市1。每个小时(包括第一个小时),它有P/Q (1 <= P <=1,000,000; 1 <= Q <= 1,000,000)的概率污染它所在的城市。如果这个小时内它没有污染它所在的城市,那麽它随机地选择一条道路,在这个小时内沿着这条道路走到一个新的城市。可以离开这个城市的所有道路被选择的概率均等。因为这个臭气弹的随机的性质,奶牛们很困惑哪个城市最有可能被污染。给定一个猪猡文明的地图和臭气弹在每个小时内爆炸的概率。计算每个城市最终被污染的概率。如下例,假设这个猪猡文明有两个连接在一起的城市。臭气炸弹从城市1出发,每到一个城市,它都有1/2的概率爆炸。 1--2 可知下面这些路径是炸弹可能经过的路径(最后一个城市是臭气弹爆炸的城市): 1: 1 2: 1-2 3: 1-2-1 4: 1-2-1-2 5: 1-2-1-2-1 ... 要得到炸弹在城市1终止的概率,我们可以把上面的第1,第3,第5……条路径的概率加起来,(也就是上表奇数编号的路径)。上表中第k条路径的概率正好是(1/2)^k,也就是必须在前k-1个回合离开所在城市(每次的概率为1 - 1/2 = 1/2)并且留在最后一个城市(概率为1/2)。所以在城市1结束的概率可以表示为1/2 + (1/2)^3 + (1/2)^5 + ...。当我们无限地计算把这些项一个个加起来,我们最后会恰好得到2/3,也就是我们要求的概率,大约是0.666666667。这意味着最终停留在城市2的概率为1/3,大约为0.333333333。

Input

* 第1行: 四个由空格隔开的整数: N, M, P, 和 Q * 第2到第M+1行: 第i+1行用两个由空格隔开的整数A_j和B_j表示一条道路。

Output

* 第1到第N行: 在第i行,用一个浮点数输出城市i被摧毁的概率。误差不超过10^-6的答桉会 被接受(注意这就是说你需要至少输出6位有效数字使得答桉有效)。

Sample Input

2 1 1 2
1 2

Sample Output

0.666666667
0.333333333

题解:好吧上来先Orz PoPoQQQ

然后本蒟蒻连题解都看了半天才懂,这里就做一下题解的注释吧~

1.矩阵的等比数列。。。什么鬼?
矩阵也是满足结合律的,跟数一样

2.为什么[I-T]乘过来后跑到了ans右边?
不然矩乘没有意义。。。

3.为什么要对[I-T]的转置求高斯消元?
因为矩乘的法则和方程组的运算法则是不一样的~你yy一下后会发现正好相反

#include <cstring>
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
const double eps=1e-10;
int n,m,p,q;
int pa[50010],pb[50010],d[310];
double v[310][310],ans[310];
int main()
{
scanf("%d%d%d%d",&n,&m,&p,&q);
if(p>q) p=q;
int i,j,k;
for(i=1;i<=m;i++) scanf("%d%d",&pa[i],&pb[i]),d[pa[i]]++,d[pb[i]]++;
v[1][n+1]=1.0*p/q;
for(i=1;i<=n;i++) d[i]=max(d[i],1);
for(i=1;i<=m;i++)
{
v[pb[i]][pa[i]]-=1.0*(q-p)/q/d[pa[i]];
v[pa[i]][pb[i]]-=1.0*(q-p)/q/d[pb[i]];
}
for(i=1;i<=n;i++) v[i][i]+=1.0;
double t;
for(i=1;i<=n;i++)
{
for(j=i+1;j<=n;j++) if(fabs(v[j][i])>fabs(v[i][i])) for(k=i;k<=n+1;k++) swap(v[i][k],v[j][k]);
for(j=i+1;j<=n;j++)
{
t=v[j][i]/v[i][i];
for(k=i;k<=n+1;k++) v[j][k]-=v[i][k]*t;
}
}
for(i=n;i>=1;i--)
{
for(j=i+1;j<=n;j++) v[i][n+1]-=v[i][j]*ans[j];
ans[i]=v[i][n+1]/v[i][i];
}
for(i=1;i<=n;i++) printf("%.9lf\n",ans[i]);
return 0;
}

【BZOJ1778】[Usaco2010 Hol]Dotp 驱逐猪猡 期望DP+高斯消元的更多相关文章

  1. bzoj 1778: [Usaco2010 Hol]Dotp 驱逐猪猡【dp+高斯消元】

    算是比较经典的高斯消元应用了 设f[i]为i点答案,那么dp转移为f[u]=Σf[v]*(1-p/q)/d[v],意思是在u点爆炸可以从与u相连的v点转移过来 然后因为所有f都是未知数,高斯消元即可( ...

  2. BZOJ 1778 [Usaco2010 Hol]Dotp 驱逐猪猡 ——期望DP

    思路和BZOJ 博物馆很像. 同样是高斯消元 #include <map> #include <ctime> #include <cmath> #include & ...

  3. bzoj1778: [Usaco2010 Hol]Dotp 驱逐猪猡(概率DP+高斯消元)

    深夜肝题...有害身心健康QAQ 设f[i]为到达i的概率,d[i]为i的度数. 因为无限久之后炸弹爆炸的概率是1,所以最后在i点爆炸的概率实际上就是f[i]/sigma(f[]) 列出方程组 f[i ...

  4. BZOJ1778 [Usaco2010 Hol]Dotp 驱逐猪猡

    首先我们列出转移矩阵$M$,$M_{i, j} = \frac {1 - \frac{p} {q}} {deg[i]}$(i,j之间有边)or $M_{i, j} = 0$(i,j之间没边) 则这个矩 ...

  5. BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元

    BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元 题意: 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 3 ...

  6. BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡 [高斯消元 概率DP]

    1778: [Usaco2010 Hol]Dotp 驱逐猪猡 题意:一个炸弹从1出发p/q的概率爆炸,否则等概率走向相邻的点.求在每个点爆炸的概率 高斯消元求不爆炸到达每个点的概率,然后在一个点爆炸就 ...

  7. BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡

    1778: [Usaco2010 Hol]Dotp 驱逐猪猡 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 563  Solved: 216[Submi ...

  8. BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元

    BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元 题意: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机 ...

  9. 【bzoj1778】[Usaco2010 Hol]Dotp 驱逐猪猡 矩阵乘法+概率dp+高斯消元

    题目描述 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 300)一共N个猪城.这些城市由M (1 <= M <= 44,850)条由两 ...

随机推荐

  1. 淘宝开源项目之Tsar

    软件介绍: Tsar是淘宝开发的一个非常好用的系统监控工具,在淘宝内部大量使用,它不仅可以监控CPU.IO.内存.TCP等系统状态,也可以监控Apache,Nginx/Tengine,Squid等服务 ...

  2. ASP.net的身份验证方式有哪些?

    [转] ASP.net的身份验证方式有哪些?分别是什么原理? Asp.net的身份验证有有三种,分别是"Windows | Forms | Passport",其中又以Forms验 ...

  3. Java程序猿修炼之道 之 Logging(3/3) - 怎么分析Log

    1. 说明 作为一个程序猿我们常常要做一件事情:获取某个Log文件,从当中找出自己想要的信息. 本文总结了我在工作中使用了哪些工具来分析Log文件获取我想要的信息,我近期几年的工作环境都是server ...

  4. Java之JDBC学习

    (一),MySql数据库 1,MySql数据库的数据类型定义 2,完整性约束: 3,索引: 作用:唯一作用就是加快对表查询速度,索引通过快速路径方法访问来快速定位数据,从而减少磁盘的II/O; 缺点: ...

  5. poj1236 Network of Schools ,有向图求强连通分量(Tarjan算法),缩点

    题目链接: 点击打开链接 题意: 给定一个有向图,求: 1) 至少要选几个顶点.才干做到从这些顶点出发,能够到达所有顶点 2) 至少要加多少条边.才干使得从不论什么一个顶点出发,都能到达所有顶点   ...

  6. Node.js 替换文档内容

    server.js代码: var http=require('http'); var fs=require('fs'); var server=http.createServer(function(r ...

  7. Node.js的静态页面想通过jQuery的Ajax函数调用远程服务的措施无效

    程序下载:https://files.cnblogs.com/files/xiandedanteng/nodejsMakejqueryAjaxInvalid.rar 在 http://www.cnbl ...

  8. Java取得操作系统的临时目录

    一般来说,程序员用Eclipse在Windows上编程,而会将war/ear包发布到Linux的服务器上. 涉及临时文件输出的话需要找一个临时目录,下面的语句就能帮你获得不分操作系统的临时目录 Str ...

  9. Android 虚线切割线

    drawable下新建一个虚线的xml.dash_line.xml <? xml version="1.0" encoding="utf-8"?> ...

  10. C连接MySql

    连接数据库connect.c #include <stdio.h> #include <mysql/mysql.h> int main() { //MYSQL句柄 MYSQL ...