只和连通分量以及度数有关。不同连通分量只要连一条边就够了,连通分量为0的时候要特判。一个连通分量只需看度数为奇的点的数量,两个端点(度数为奇)是必要的。

如果多了,奇点数也一定是2的倍数(一条边增加两个度数,总度数是偶数),把多余的成对奇点连边,一定存在一条欧拉路径。

并查集维护或者dfs都可以。

/*********************************************************
* --------------Tyrannosaurus--------- *
* author AbyssalFish *
**********************************************************/
#include<bits/stdc++.h>
using namespace std; typedef long long ll; int V,E,T; const int maxv = ;
int pa[maxv], deg[maxv], wei[maxv], odd[maxv]; int fd(int x){ return x==pa[x]?x:pa[x]=fd(pa[x]); } bool jot(int a,int b)
{
int x = fd(a), y = fd(b);
if(x != y){
pa[x] = y;
wei[y] += wei[x];
return true;
}
return false;
} int cop;
int ver[maxv], sz;
void newVertex(int i)
{
ver[sz++] = i; odd[i] = ;
pa[i] = i; wei[i] = ; deg[i] = ; cop++;
} //#define LOCAL
int main()
{
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif
int kas = ;
while(scanf("%d%d%d",&V,&E,&T),V){
memset(wei+,,sizeof(int)*V);
cop = ; sz = ;
for(int i = ; i < E; i++){
int a , b; scanf("%d%d",&a,&b);
if(!wei[a]) newVertex(a);
if(!wei[b]) newVertex(b);
deg[a]++; deg[b]++;
if(jot(a,b)) cop--;
}
int ans = E + (cop?cop-:);
for(int i = ; i < sz; i++){
int v = ver[i];
if(deg[v] & ) odd[fd(v)]++;
}
for(int i = ; i < sz; i++){
int o = odd[ver[i]];
if(o >= ) ans += (o>>) -;
}
printf("Case %d: %d\n",++kas, ans*T);
}
return ;
}

UVA 12118 Inspector's Dilemma(连通性,欧拉路径,构造)的更多相关文章

  1. UVA - 12118 Inspector's Dilemma(检查员的难题)(欧拉回路)

    题意:有一个n个点的无向完全图,找一条最短路(起点终点任意),使得该道路经过E条指定的边. 分析: 1.因为要使走过的路最短,所以每个指定的边最好只走一遍,所以是欧拉道路. 2.若当前连通的道路不是欧 ...

  2. UVa 12118 nspector's Dilemma (构造+DFS+欧拉回路)

    题意:给定n个点,e条边和每条边的长度t,每两个点之间都有路相连,让你求一条最短的路经过这e条边. 析:刚开始想到要判连通,然后把相应的几块加起来,但是,第二个样例就不过,后来一想,那么有欧拉回路的还 ...

  3. 【UVa】12118 Inspector's Dilemma(欧拉道路)

    题目 题目     分析 很巧秒的一道题目,对着绿书瞎yy一会. 联一下必须要走的几条边,然后会形成几个联通分量,统计里面度数为奇数的点,最后再减去2再除以2.这样不断相加的和加上e再乘以t就是答案, ...

  4. UVA12118 Inspector's Dilemma(欧拉路径)

    题目: 某个国家有V(V≤1000)个城市,每两个城市之间都有一条双向道路直接相连,长度为T(每条边的长度都是T).你的任务是找一条最短的道路(起点和终点任意), 使得该道路经过E条指定的边.输出这条 ...

  5. uva 701 - The Archeologists' Dilemma

    题目链接:uva 701 - The Archeologists' Dilemma 题目大意:给出x,求一个e,使得x * 10 ^ y ≤ 2 ^ e < (x + 1) * 10 ^ y. ...

  6. UVa 12118 检查员的难题 (dfs判连通, 构造欧拉通路)

    题意: 分析: 欧拉通路:图连通:图中只有0个或2个度为奇数的结点 这题我们只需要判断选择的边构成多少个联通块, 再记录全部联通块一共有多少个奇度顶点. 然后我们在联通块中连线, 每次连接两个联通块就 ...

  7. UVa 12118 检查员的难题(dfs+欧拉回路)

    https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  8. UVa 10129 Play on Words(有向图欧拉路径)

    Some of the secret doors contain a very interesting word puzzle. The team of archaeologists has to s ...

  9. Inspector's Dilemma(欧拉通路)

    In a country, there are a number of cities. Each pair of city is connected by a highway, bi-directio ...

随机推荐

  1. MATLAB解决常微分方程

    首先得介绍一下,在matlab中解常微分方程有两种方法,一种是符号解法,另一种是数值解法.在本科阶段的微分数学题,基本上可以通过符号解法解决.   用matlab解决常微分问题的符号解法的关键命令是d ...

  2. The Knuth-Morris-Pratt Algorithm in my own words(转)

    origianl For the past few days, I’ve been reading various explanations of the Knuth-Morris-Pratt str ...

  3. Java8 使用 stream().filter()过滤List对象(查找符合条件的对象集合)

    内容简介 本文主要说明在Java8及以上版本中,使用stream().filter()来过滤一个List对象,查找符合条件的对象集合. List对象类(StudentInfo) public clas ...

  4. 51nod1042(0-x出现次数&分治)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1042 题意:中文题诶- 思路:这道题和前面的51nod100 ...

  5. 分层图最短路 【bzoj1579】[Usaco2009 Feb]Revamping Trails 道路升级

    1579: [Usaco2009 Feb]Revamping Trails 道路升级 Description 每天,农夫John需要经过一些道路去检查牛棚N里面的牛. 农场上有M(1<=M< ...

  6. POJ1013 Counterfeit Dollar

    题目来源:http://poj.org/problem?id=1013 题目大意:有12枚硬币,其中有一枚假币.所有钱币的外表都一样,所有真币的重量都一样,假币的重量与真币不同,但我们不知道假币的重量 ...

  7. 牛客练习赛43D(贪心)

    有生之年我居然也能不看题解做出来题QAQ-- 发现c.d是0.1序列而不是随机数列说明有蹊跷,于是发现负数直接配0,正数配1即可.不知道哪个最小,那就全求一下吧--我的做法的坑点是数正好为1时不可以选 ...

  8. 2017 ACM/ICPC Asia Regional Shenyang Online card card card

    题意:看后面也应该知道是什么意思了 解法: 我们设置l,r,符合条件就是l=起始点,r=当前点,不符合l=i+1 学习了一下FASTIO #include <iostream> #incl ...

  9. 安装mongodb并配置

    下载网址http://dl.mongodb.org/dl/win32/x86_64 mongodb-win32-x86_64-2008plus-ssl-v3.4-latest.zip 解压d盘命名mo ...

  10. 解决tomcat闪退问题

    https://blog.csdn.net/zh2nd/article/details/79068680 转载此博客链接内容,非常感谢博主 本文参考CSDN博主 哈克沃德.的<Tomcat8启动 ...