[超详细] Python3爬取豆瓣影评、去停用词、词云图、评论关键词绘图处理
爬取豆瓣电影《大侦探皮卡丘》的影评,并做词云图和关键词绘图
第一步:找到评论的网页url。
https://movie.douban.com/subject/26835471/comments?start=0&limit=20&sort=new_score&status=P
第二步:鼠标放在评论上右键检查,分析源代码,确定抓取的内容。
<span class="short">萌就行了!这个世界观感觉梦想成真了!</span>
1
如上,只要抓取该标签下的文本就好,这里可以用正则表达式,里面的文本内容用(.*?)抓取。
第三步:观察分页情况。
点击下一页,发现链接变为:
https://movie.douban.com/subject/26835471/comments?start=20&limit=20&sort=new_score&status=P
发现只有start=后面的数字改变,每页20条评论,每页*20即可
导入模块
这些模块可在cmd下输入pip install 模块名,或者pycharm中setting-Project Interpreter里右边的+号安装
import requests
import re
from wordcloud import WordCloud
import jieba
from PIL import Image
import jieba.analys
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
1
2
3
4
5
6
7
8
9
10
1、用requests获取url
因为爬虫次数较多可能IP被封,所以找了个代理IP,参数里习惯性加上headers伪装成浏览器访问。
def getHtml(url):
# 获取url页面
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.67 Safari/537.36'}
proxies = {'http': '61.135.217.7:80'}
response = requests.get(url, headers=headers, proxies=proxies)
response.encoding = 'utf-8'
return response.text
1
2
3
4
5
6
7
8
2、用正则解析网页,提取文本,返回评论列表
def getComment(url):
# 用正则提取评论文本,返回一个列表
html = getHtml(url) #调用上一个函数
comments = re.findall('<span class="short">(.*?)</span>', html, re.S) # re.S记得加上,空字符串
onepageComments = [] # 创建一个空列表,存放评论
#用正则表达式解析出来的是一个列表,遍历列表,将每一个评论取出,添加到空列表里,每个评论后面换行
for i in comments:
onepageComments.append(i + '\n')
return onepageComments
1
2
3
4
5
6
7
8
9
3、分页、函数回调,写入本地文件
if __name__ == '__main__':
f = open(r'大侦探皮卡丘部分影评.txt', 'w', encoding='utf-8')
#这里抓取10页内容,如果太多页可能需要登录豆瓣账号,然后在requests.get参数中增加一个cookies参数即可浏览后面的评论
for page in range(10):
url = 'https://movie.douban.com/subject/26835471/comments?start=' + str(
20 * page) + '&limit=20&sort=new_score&status=P' # 分页
# print('第%s页的评论:' % (page+1)) #这里可以知道正在爬取的是第几页的评论,方便自己核对
for i in getComment(url):
f.write(i) # 将每一页评论都写入本地文件中
# print(i) # 打印所有评论
# print('\n') # 每页换行
1
2
3
4
5
6
7
8
9
10
11
4、词云图
先将抓取的文件打开,注意编码
comments = open('大侦探皮卡丘部分影评.txt', 'r', encoding='utf-8').read()
1
以下词云图分几种情况,都可以尝试跑一遍看看效果,最全面的可以直接看第3小点。
4.1 如果不分词
wc = WordCloud(background_color='white', # 设置背景颜色
font_path="C:\Windows\Fonts\msyh.ttf", # 设置中文字体
max_font_size=60, # 设置字体最大值
random_state=30, # 设置有多少种随机生成状态,即有多少种配色方案
width=800,
height=600
).generate(comments) # 生成词云
# 展示词云图
plt.figure(figsize=(20, 10)) #设置画布大小
plt.imshow(wc, interpolation='bilinear')
plt.axis("off") #去掉坐标轴
plt.show()
1
2
3
4
5
6
7
8
9
10
11
12
4.2 jieba分词
wordlist = jieba.cut(str(comments), cut_all=False) #精确模式
wl = " ".join(wordlist)
wc = WordCloud(background_color='white', # 设置背景颜色
font_path="C:\Windows\Fonts\msyh.ttf", # 设置中文字体
max_font_size=60, # 设置字体最大值
random_state=30, # 设置有多少种随机生成状态,即有多少种配色方案
width=800,
height=600
).generate(wl) # 注意这里面的参数是wl
# 展示词云图
plt.figure(figsize=(20, 10)) #设置画布大小
plt.imshow(wc, interpolation='bilinear')
plt.axis("off") #去掉坐标轴
plt.show()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
4.3 结巴分词,加上萌图,去停用词,并保存图片
相关的模块要导进来
这里有一个哈工大停用词表,可自行网上下载
然后下载一张词云用的背景图(我这里是pikaqiu.png,一张皮卡丘的图)
wordlist = jieba.cut(str(comments), cut_all=False) #精确模式
wl = " ".join(wordlist)
# 设置背景图
mask = np.array(Image.open('pikaqiu.png', 'r'))
# 设置停用词
stopwords_file = open('哈工大停用词表.txt', 'r')
stopwords = [words.strip() for words in stopwords_file.readlines()]
# 设置词云(里面多加了几个参数)
wc = WordCloud(background_color='white', # 设置背景颜色
mask=mask, # 设置背景图片
max_words=2000, # 设置最大词数
stopwords=stopwords, # 设置停用词
font_path="C:\Windows\Fonts\msyh.ttf", # 设置中文字体
max_font_size=60, # 设置字体最大值
random_state=30, # 设置有多少种随机生成状态,即有多少种配色方案
width=600,
height=800
).generate(wl) # 生成词云
# 展示词云图
plt.figure(figsize=(8, 6)) #设置画布大小
plt.imshow(wc, interpolation='bilinear')
plt.axis("off") #去掉坐标轴
plt.show()
wc.to_file('result.jpg') #存为图片
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
到这里基本就完成了
5、取前20个评论关键词
# withWeight=True一并返回关键词、权重值
keywords = jieba.analyse.extract_tags(
comments, topK=20, withWeight=True, allowPOS=("n", "v")) # 指定名词和动词
# 变成dataframe格式
comm = pd.DataFrame(keywords)
for item in keywords:
print(item[0], item[1])
# 设置画布大小
plt.figure(figsize=(10, 8))
#显示中文
mpl.rcParams['font.sans-serif'] = ['SimHei']
# 画图
plt.bar(comm[0], comm[1], color="c")
# 设置标签,标题,调整大小
plt.xlabel('词语', fontsize=20)
plt.ylabel('权重', fontsize=20)
plt.title('评论词频', fontsize=20)
plt.tick_params(labelsize=10)
# 在每个直条上加标签
for a, b in zip(comm[0], comm[1]):
plt.text(a, b, '%.2f' % b, ha='center', va='bottom', fontsize=10)
plt.show(http://www.my516.com)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
---------------------
[超详细] Python3爬取豆瓣影评、去停用词、词云图、评论关键词绘图处理的更多相关文章
- Scrapy 通过登录的方式爬取豆瓣影评数据
Scrapy 通过登录的方式爬取豆瓣影评数据 爬虫 Scrapy 豆瓣 Fly 由于需要爬取影评数据在来做分析,就选择了豆瓣影评来抓取数据,工具使用的是Scrapy工具来实现.scrapy工具使用起来 ...
- 【python数据挖掘】爬取豆瓣影评数据
概述: 爬取豆瓣影评数据步骤: 1.获取网页请求 2.解析获取的网页 3.提速数据 4.保存文件 源代码: # 1.导入需要的库 import urllib.request from bs4 impo ...
- python3爬取豆瓣top250电影
需求:爬取豆瓣电影top250的排名.电影名称.评分.评论人数和一句话影评 环境:python3.6.5 准备工作: 豆瓣电影top250(第1页)网址:https://movie.douban.co ...
- python 爬取豆瓣电影短评并wordcloud生成词云图
最近学到数据可视化到了词云图,正好学到爬虫,各种爬网站 [实验名称] 爬取豆瓣电影<千与千寻>的评论并生成词云 1. 利用爬虫获得电影评论的文本数据 2. 处理文本数据生成词云图 第一步, ...
- Python3爬取豆瓣网电影信息
# -*- coding:utf-8 -*- """ 一个简单的Python爬虫, 用于抓取豆瓣电影Top前250的电影的名称 Language: Python3.6 ...
- python3爬取豆瓣排名前250电影信息
#!/usr/bin/env python # -*- coding: utf-8 -*- # @File : doubanmovie.py # @Author: Anthony.waa # @Dat ...
- Python的scrapy之爬取豆瓣影评和排名
基于scrapy框架的爬影评 爬虫主程序: import scrapy from ..items import DoubanmovieItem class MoviespiderSpider(scra ...
- 爬取豆瓣电影影评,生成wordcloud词云,并利用监督学习根据评论自动打星
本文的完整源码在git位置:https://github.com/OceanBBBBbb/douban-ml 爬取豆瓣影评 爬豆瓣的影评比较简单,豆瓣没有做限制,甚至你都不用登陆就可以看全部,我这里用 ...
- python 爬取豆瓣电影评论,并进行词云展示及出现的问题解决办法
本文旨在提供爬取豆瓣电影<我不是药神>评论和词云展示的代码样例 1.分析URL 2.爬取前10页评论 3.进行词云展示 1.分析URL 我不是药神 短评 第一页url https://mo ...
随机推荐
- 洛谷P1979 华容道(70分 暴力)
P1979 华容道 题目描述 [问题描述] 小 B 最近迷上了华容道,可是他总是要花很长的时间才能完成一次.于是,他想到用编程来完成华容道:给定一种局面, 华容道是否根本就无法完成,如果能完成, 最少 ...
- 谈缓存数据库在web开发中的重要性
1.开局先抛出如下问题: ①当关系型数据库存放的数据量很大时,每次查询耗时明显变长,那么如何解决该问题? ②当业务要求单用户登录(即同一个账户有一个用户登录后,第二个用户再登录该账户要么挤出之前的登录 ...
- jmeter 正则获取参数集合和ForEach控制器结合使用(转)
怎么把第一个请求获取的返回的多个id,在第二个请求中逐个以单个id作为请求参数来请求? 为了解决这个问题,模拟下该场景 1.请求www.163.com 主页,获取响应中的所有数字,这个获取的数字集合暂 ...
- 3、python数据类型之字符串(str)
字符串是任何计算机语言中最常见的数据类型,python中也不例外,因此熟练掌握字符串是学习python的必备技能.python中字符串三种定义方式 str = 'wang' str = "w ...
- 策略模式(Strategy
Strategy 无论什么程序,其目的都是解决问题.而为了解决问题,我们又需要编写特定的算法.使用Strategy模式可以整体地替换算法的实现部分.能够整体地替换算法,能让我们轻松地以不同的算法去解决 ...
- BZOJ 1924 && Luogu P2403 [SDOI2010]所驼门王的宝藏 恶心建图+缩点DP
记住:map一定要这么用: if(mp[x[i]+dx[j]].find(y[i]+dy[j])!=mp[x[i]+dx[j]].end()) add(i,mp[x[i]+dx[j]][y[i]+dy ...
- CF C. Maximal Intersection(贪心 || STL)
题意 给你N个线段(一条直线上),问删去一个之后,最长公共长度 : 分析:首先我们得先知道n条线段公共的线段一定是(LMAX,RMIN) ,那我们可以先排序,然后枚举删除边: #include< ...
- js中大数据量form表单卡顿问题解决
转载大神: http://www.mamicode.com/info-detail-1773696.html
- I - Defeat the Enemy UVALive - 7146 二分 + 贪心
https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...
- Washing Plates 贪心
https://www.hackerrank.com/contests/101hack41/challenges/washing-plates 给定n个物品,选这个物品,贡献 + p, 不选的话,贡献 ...