题目链接

https://vjudge.net/problem/CodeForces-999D

题面

Description

You are given an array consisting of n integers a1,a2,…,an, and a positive integer m. It is guaranteed that m is a divisor of n.

In a single move, you can choose any position i between 1 and n and increase ai by 1.

Let's calculate cr (0≤r≤m−1) — the number of elements having remainder r when divided by m. In other words, for each remainder, let's find the number of corresponding elements in a with that remainder.

Your task is to change the array in such a way that c0=c1=⋯=cm−1=\(\frac{n}m\).

Find the minimum number of moves to satisfy the above requirement.

Input

The first line of input contains two integers n and m (1≤n≤2⋅105,1≤m≤n). It is guaranteed that m is a divisor of n.

The second line of input contains n integers a1,a2,…,an (0≤ai≤109), the elements of the array.

Output

In the first line, print a single integer — the minimum number of moves required to satisfy the following condition: for each remainder from 0 to m−1, the number of elements of the array having this remainder equals \(\frac{n}m\)

In the second line, print any array satisfying the condition and can be obtained from the given array with the minimum number of moves. The values of the elements of the resulting array must not exceed \(10^{18}\).

Examples

Input

6 3
3 2 0 6 10 12

Output

3
3 2 0 7 10 14

Input

4 2
0 1 2 3

Output

0
0 1 2 3

题解

当初比赛中做麻烦,直接写正解吧

用set维护现在个数还不够\(\frac{n}{m}\)的余数,然后从1到n循环,计算a[i]的余数,找到set中第一个大于等于这个余数的余数,把这个数的余数补成它,如果没有大于大于等于的,就找到set中的第一个数,这样每个余数不足的都由离他最近的数补成,从而使操作次数最小,用一个change数组记录每个数变化了多少,最后输出a[i]+change[i]即可

#include<bits/stdc++.h>
#define N 200050
using namespace std;
typedef long long ll;
int a[N];
int cnt[N];
int change[N];
int main() {
int n, m;
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
}
ll ans = 0;
set<int> s;
for (int i = 0; i < m; i++) {
s.insert(i);
}
for (int i = 1; i <= n; i++) {
int tmp = a[i] % m;
int x = tmp > *s.rbegin() ? *s.begin() : *s.lower_bound(tmp);
cnt[x]++;
if (cnt[x] == n / m) s.erase(x);
ans += (x - tmp + m) % m;
change[i] += (x - tmp + m) % m;
}
printf("%lld\n", ans);
for (int i = 1; i <= n; i++) {
printf("%d ", a[i] + change[i]);
}
return 0;
}

CodeForces-999D Equalize the Remainders的更多相关文章

  1. Codeforces 999D Equalize the Remainders (set使用)

    题目连接:Equalize the Remainders 题意:n个数字,对m取余有m种情况,使得每种情况的个数都为n/m个(保证n%m=0),最少需要操作多少次? 每次操作可以把某个数字+1.输出最 ...

  2. CodeForces - 999D Equalize the Remainders (模拟+set)

    You are given an array consisting of nn integers a1,a2,…,ana1,a2,…,an , and a positive integer mm . ...

  3. D. Equalize the Remainders (set的基本操作)

    D. Equalize the Remainders time limit per test 3 seconds memory limit per test 256 megabytes input s ...

  4. D. Equalize the Remainders set的使用+思维

    D. Equalize the Remainders set的学习::https://blog.csdn.net/byn12345/article/details/79523516 注意set的end ...

  5. D. Equalize the Remainders 解析(思維)

    Codeforce 999 D. Equalize the Remainders 解析(思維) 今天我們來看看CF999D 題目連結 題目 略,請直接看原題 前言 感覺要搞個類似\(stack\)的東 ...

  6. codeforces 616E Sum of Remainders (数论,找规律)

    E. Sum of Remainders time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  7. Codeforces 616E - Sum of Remainders

    616E Sum of Remainders Calculate the value of the sum: n mod 1 + n mod 2 + n mod 3 + - + n mod m. As ...

  8. codeforces 616E. Sum of Remainders 数学

    题目链接 给两个数n, m. 求n%1+n%2+.......+n%m的值. 首先, n%i = n-n/i*i, 那么原式转化为n*m-sigma(i:1 to m)(n/i*i). 然后我们可以发 ...

  9. Codeforces 1037C Equalize

    原题 题目大意: 给你两个长度都为\(n\)的的\(01\)串\(a,b\),现在你可以对\(a\)串进行如下两种操作: 1.交换位置\(i\)和位置\(j\),代价为\(|i-j|\) 2.反转位置 ...

随机推荐

  1. Xamarin.Forms随手记

    1. 更新Android SDK要从VS的工具栏上SDK Manager那里更新,不要像我一样之前搞了好几份SDK放在不同的地方,结果把自己搞糊涂了,更新了半天(真的是花了半天时间)才发现更新的地方不 ...

  2. python3 安装turtle tkitnter 报错

    导入tkinter模块后,运行出现No module named _tkinter, please install the python-tk package ubuntu运行tkinter错误   ...

  3. Laravel 5 : Call to undefined function Illuminate\Foundation\Bootstrap\mb_internal_encoding()

    自己组装的apache,php,mysql phpinfo显示 OpenSSL support     disabled (install ext/openssl) 判断为权限问题,所以修改如下. 1 ...

  4. 9、SpringBoot+Mybatis整合------动态sql

    开发工具:STS 前言: mybatis框架中最具特色的便是sql语句中的自定义,而动态sql的使用又使整个框架更加灵活. 动态sql中的语法: where标签 if标签 trim标签 set标签 s ...

  5. PNChart,简洁高效有动画效果的iOS图表库

    导入 pod导入相对简单,要手动导入这个库,先下载下来(https://github.com/kevinzhow/PNChart),解压后把PNChart文件夹拖入工程中 运行发现#import&qu ...

  6. jq weui 图片浏览器Photo Browser 第一次点击任意图片总是显示第一张

    第一次做这个图片浏览器的时候遇到一个问题,如共有6张图片,每次进入页面时,第一次点击,无论去点击6张图片的哪一张初始化显示的都是第一张图片.后面的每次点击都没有问题的. for(let i = 0;i ...

  7. Linux - 用户环境变量的查看与设置

    1. 查看当前有哪些环境变量 直接输入命令:env 2. 设置用户环境变量 输入命令:vim ~/.bash_profile,打开文件,输入如下内容: 范例(设置maven环境变量): export ...

  8. 轻量级自动化工具 pssh

    pssh应用场景 pssh是一个用python编写的可以并发在多台服务器上批量执行命令的工具,它支持文件并行复制,远程并行执行命令,其中文件并行复制是pssh的核心功能,也是同类工具中的一个亮点. 要 ...

  9. C#基础-委托与事件

    委托 delegate是申明委托的关键字 返回类型都是相同的,并且参数类型个数都相同 委托声明 delegate double DelOperater(double num1, double num2 ...

  10. 统计寄存器AX中1 的个数

    ;==================================== ; 统计寄存器AX中1 的个数 DATAS segment DATAS ends CODES segment START: ...