HDU 4549 (费马小定理+矩阵快速幂+二分快速幂)
Time Limit: 1000MS | Memory Limit: 32768KB | 64bit IO Format: %I64d & %I64u |
Description
F[0] = a
F[1] = b
F[n] = F[n-1] * F[n-2] ( n > 1 )
现在给出a, b, n,你能求出F[n]的值吗?
Input
每组数据占一行,包含3个整数a, b, n( 0 <= a, b, n <= 10^9 )
Output
Sample Input
6 10 2
Sample Output
60
Source
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define mod 1000000006
#define mod2 1000000007
typedef long long ll;
struct matrix
{
ll data[][];
};
matrix I= {,,,};
matrix multi(matrix a,matrix b)
{
matrix c;
memset(c.data,,sizeof(c.data));
for(int i=; i<; i++)
for(int j=; j<; j++)
for(int k=; k<; k++)
{
c.data[i][j]+=(a.data[i][k]%mod)*(b.data[k][j]%mod);
c.data[i][j]%=mod;
}
return c;
}
matrix pow(matrix a,ll b)
{
matrix ans=I;
while(b)
{
if(b&)
{
ans=multi(ans,a);
b--;
}
b>>=;
a=multi(a,a);
}
return ans;
}
ll pow2(ll a,ll b)
{
ll ans=;
while(b)
{
if(b&)
{
ans*=a;
ans%=mod2;
b--;
}
b>>=;
a*=a;
a%=mod2;
}
return ans;
}
int main()
{
ll aa,bb,an,bn,n;
while(scanf("%lld%lld%lld",&aa,&bb,&n)!=EOF)
{
matrix a= {,,,};
matrix ans;
ans=pow(a,n);
bn=ans.data[][];
an=ans.data[][];
//cout<<"a: "<<an<<" b: "<<bn<<endl;
ll ans2=((pow2(aa,an)%mod2)*(pow2(bb,bn)%mod2))%mod2;
printf("%lld\n",ans2);
}
return ;
}
HDU 4549 (费马小定理+矩阵快速幂+二分快速幂)的更多相关文章
- 【bzoj5118】Fib数列2 费马小定理+矩阵乘法
题目描述 Fib定义为Fib(0)=0,Fib(1)=1,对于n≥2,Fib(n)=Fib(n-1)+Fib(n-2) 现给出N,求Fib(2^n). 输入 本题有多组数据.第一行一个整数T,表示数据 ...
- bzoj5118: Fib数列2(费马小定理+矩阵快速幂)
题目大意:求$fib(2^n)$ 就是求fib矩阵的(2^n)次方%p,p是质数,根据费马小定理有 注意因为模数比较大会爆LL,得写快速乘法... #include<bits/stdc++.h& ...
- HDOJ 4549 M斐波那契数列 费马小定理+矩阵高速幂
MF( i ) = a ^ fib( i-1 ) * b ^ fib ( i ) ( i>=3) mod 1000000007 是质数 , 依据费马小定理 a^phi( p ) = 1 ( ...
- hdu 4704(费马小定理+快速幂取模)
Sum Time Limit: 2000/ ...
- Fib数列2 费马小定理+矩阵乘法
题解: 费马小定理 a^(p-1)=1(mod p) 这里推广到矩阵也是成立的 所以我们可以对(2^n)%(p-1) 然后矩阵乘法维护就好了 模数较大使用快速乘
- hdu 4704(费马小定理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4704 思路:一道整数划分题目,不难推出公式:2^(n-1),根据费马小定理:(2,MOD)互质,则2^ ...
- hdu 3037 费马小定理+逆元除法取模+Lucas定理
组合数学推推推最后,推得要求C(n+m,m)%p 其中n,m小于10^9,p小于1^5 用Lucas定理求(Lucas定理求nm较大时的组合数) 因为p数据较小可以直接阶乘打表求逆元 求逆元时,由费马 ...
- HDOJ 5667 Sequence//费马小定理 矩阵快速幂
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5667 题意:如题给了一个函数式,给你a,b,c,n,p的值,叫你求f(n)%p的值 思路:先对函数取以a为 ...
- 【费马小定理+矩阵快速幂】HDU4549——M斐波那契数列
[题目大意] M斐波那契数列F[n]是一种整数数列,它的定义如下:F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 )现在给出a, b, n,求出F[ ...
随机推荐
- <Docker学习>3. docker镜像命令使用
镜像提供容器运行时所需要的程序,资源.配置文件等,是一个特殊的文件系统.是容器运行的基础.镜像是多层文件系统组成的,是一个分层存储的架构,在镜像的构建中,会一层层的构建,每一层构建完成就不会发生改变, ...
- WPF Datagrid对鼠标单击进行响应,借助EventSetter
在做的一个c#的项目中发现Datagrid没办法直接对鼠标单击进行响应, 调用MouseDown事件也需要点击某一行第二次才能响应. 所以借助EventSetter来简单的实现了一个. 界面部分的代码 ...
- C++基础 C++对类的管理——封装
1.封装 两层含义: (1)把事物的属性和方法结合成个整体. (2)对类的属性和方法进行访问控制,对不信的进行信息屏蔽. 2.访问控制 控制分为 类的内部,类的外部. public 修饰的成员,可在内 ...
- hive-pom.xml
4.0.0 <groupId>com.cenzhongman</groupId> <artifactId>hive</artifactId> <v ...
- Android 自定义圆形图片 CircleImageView
1.效果预览 1.1.布局中写自定义圆形图片的路径即可 1.2.然后看一看图片效果 1.3.原图是这样的 @mipmap/ic_launcher 2.使用过程 2.1.CircleImageView源 ...
- windows上php环境下memcache和mongodb的安装
mangodb安装 1. 下载mongodb的安装文件,我安装的windows 64位的,下载地址如下: https://fastdl.mongodb.org/win32/mongodb-win32- ...
- 【Balanced Binary Tree】cpp
题目: Given a binary tree, determine if it is height-balanced. For this problem, a height-balanced bin ...
- linux ubuntu开启sshd
which ssh #查看文件 sudo apt-get install ssh #安装ssh cd /etc/init.d #切换目录 ls -l | grep ssh #执行启动脚本 sudo s ...
- 1094 The Largest Generation (25 分)(树的遍历)
求结点最多的一层 输出该层的结点个数以及层号 #include<bits/stdc++.h> using namespace std; vector<]; map<int,in ...
- REMIX与LOCALHOST相连
REMIX与LOCALHOST相连 让Remix与本地文件系统进行交互,点击connect同时找到localhost下的Remix文件管理器的共享目录.在开始之前,参考网址: https://remi ...