[bzoj3122][SDOI2013]随机数生成器 ——BSGS,数列
题目大意
给定递推序列:
F[i] = a*F[i-1] + b (mod c)
求一个最小的i使得F[i] == t
题解
我们首先要化简这个数列,作为一个学渣,我查阅了一些资料:
http://d.g.wanfangdata.com.cn/Periodical_cczl200924107.aspx
http://wenku.baidu.com/view/7162471b650e52ea5518982d.html
推一下,就有:
a_{n+1}+\frac{c}{b-1}=ba_n+c+\frac{c }{ b-1}=b(a_n+\frac{c}{b-1})\\
a_{n+1}+\frac c{b-1}=b^{n-1}(a_1+\frac c{b-1})
\]
\]
令F[i] = t;
可以知道:
a^(i-1) = (t+b/(a-1)) / (x1+b/(a-1))
对于这个式子,我们直接调用BSGS算法求解即可。
特别的,某些情况需要特判。
代码
#include <bits/stdc++.h>
#define ll long long
using namespace std;
ll p, a, b, X1, t, T;
ll pow(ll a, ll b, ll p) {
ll ans = 1;
while(b) {
if(b & 1) ans = ans * a % p;
b >>= 1;
a = a * a % p;
}
return ans;
}
ll inv(ll a, ll p) {
return pow(a, p-2, p);
}
map<ll, ll> mp;
ll BSGS(ll A, ll B, ll C) {
mp.clear();
if(A % C == 0) return -2;
ll m = ceil(sqrt(C));
ll ans;
for(int i = 0; i <= m; i++) {
if(i == 0) {
ans = B % C;
mp[ans] = i;
continue;
}
ans = (ans * A) % C;
mp[ans] = i;
}
ll t = pow(A, m, C);
ans = t;
for(int i = 1; i <= m; i++) {
if(i != 1)ans = ans * t % C;
if(mp.count(ans)) {
int ret = i * m % C - mp[ans] % C;
return (ret % C + C)%C;
}
}
return -2;
}
int main() {
// freopen("input", "r", stdin);
scanf("%lld", &T);
while(T--) {
scanf("%lld %lld %lld %lld %lld", &p, &a, &b, &X1, &t);
if(X1 == t) {
printf("%d\n", 1);
continue;
}
if(a == 0) {
if(t == b) {
printf("%d\n", 2);
}
else printf("%d\n", -1);
continue;
}
if(a == 1) {
if(b == 0) {
printf("%d\n", -1);
continue;
}
ll ans = (((t-X1)%p + p)%p * inv(b, p)) % p;
printf("%lld\n", ans+1);
continue;
}
X1 %= p, a %= p, b %= p, t%= p;
ll tmp = (b%p * inv(a-1, p))%p;
ll B = ((t+tmp)%p * inv((X1+tmp) % p, p)) % p;
ll A = a;
ll ans = BSGS(A, B, p);
printf("%lld\n", ans+1);
}
return 0;
}
[bzoj3122][SDOI2013]随机数生成器 ——BSGS,数列的更多相关文章
- BZOJ3122: [Sdoi2013]随机数生成器(BSGS)
题意 题目链接 Sol 这题也比较休闲. 直接把\(X_{i+1} = (aX_i + b) \pmod P\)展开,推到最后会得到这么个玩意儿 \[ a^{i-1} (x_1 + \frac{b}{ ...
- bzoj3122 [SDOI2013]随机数生成器
bzoj3122 [SDOI2013]随机数生成器 给定一个递推式, \(X_i=(aX_{i-1}+b)\mod P\) 求满足 \(X_k=t\) 的最小整数解,无解输出 \(-1\) \(0\l ...
- 【BZOJ3122】[Sdoi2013]随机数生成器 BSGS+exgcd+特判
[BZOJ3122][Sdoi2013]随机数生成器 Description Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数. 接下来T行,每行有五个整数p,a,b, ...
- 【BZOJ-3122】随机数生成器 BSGS
3122: [Sdoi2013]随机数生成器 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1362 Solved: 531[Submit][Sta ...
- 【BZOJ 3122】 [Sdoi2013]随机数生成器 (BSGS)
3122: [Sdoi2013]随机数生成器 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1442 Solved: 552 Description ...
- BZOJ3122 [Sdoi2013]随机数生成器 【BSGS】
题目 输入格式 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数. 接下来T行,每行有五个整数p,a,b,X1,t,表示一组数据.保证X1和t都是合法的页码. 注意:P一定为质数 输出 ...
- 【bzoj3122】[Sdoi2013]随机数生成器 BSGS思想的利用
题目描述 给出递推公式 $x_{i+1}=(ax_i+b)\mod p$ 中的 $p$.$a$.$b$.$x_1$ ,其中 $p$ 是质数.输入 $t$ ,求最小的 $n$ ,使得 $x_n=t$ . ...
- bzoj千题计划259:bzoj3122: [Sdoi2013]随机数生成器
http://www.lydsy.com/JudgeOnline/problem.php?id=3122 等比数列求和公式+BSGS #include<map> #include<c ...
- bzoj 3122 : [Sdoi2013]随机数生成器 BSGS
BSGS算法 转自:http://blog.csdn.net/clove_unique 问题 给定a,b,p,求最小的非负整数x,满足$a^x≡b(mod \ p)$ 题解 这就是经典的BSGS算法, ...
随机推荐
- Linux基本的指令操作
绝对路径: 路径的写法,由根目录/写起,例如:/usr/share/doc这个目录. 相对路径: 路径的写法,不由/写起,例如由/usr/share/doc要到/usr/share/man底下时,可以 ...
- 爬取多个url页面数据--手动实现
# -*- coding: utf-8 -*- import scrapy from qiubaiByPages.items import QiubaibypagesItem class Qiubai ...
- ### Cause: java.lang.reflect.UndeclaredThrowableException
### Cause: java.lang.reflect.UndeclaredThrowableException Caused by: org.apache.ibatis.exceptions.Pe ...
- [Bzoj4289]PA2012 Tax(Dijkstra+技巧建图)
Description 给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价.起点的代价是离开起点的边的边权,终点的代价是进入终点的边的边 ...
- 计算机指令集CISC与RISC
当接触一新CPU时商家会首先描述它是RISC指令集,这意味着什么,从这个描述你能了解多少CPU特性信息? 复杂指令集计算机(CISC) 长期来,计算机性能的提高往往是通过增加硬件的复杂性来获得.随着集 ...
- JDBC---java与数据库中数据类型的对应关系
基础数据类型 Java 类型 SQL 类型 int 或 java.lang.Integer INTEGER long 或 java.lang.Long BIGINT short 或 java.lang ...
- 绑定host域名 修改手机hosts域名
windows: C:\Windows\System32\drivers\etc\hosts # 在这儿输入你需要绑定的 hosts 116.31.72.421129 bro-user.flyme.c ...
- AOP的两种实现方式
技术交流群 :233513714 AOP,面向切面编程,可以通过预编译方式和运行期动态代理实现在不修改源代码的情况下给程序动态统一添加功能的一种技术. Aspect Oriented Progr ...
- 剑指Offer - 九度1512 - 用两个栈实现队列
剑指Offer - 九度1512 - 用两个栈实现队列2013-11-29 21:23 题目描述: 用两个栈来实现一个队列,完成队列的Push和Pop操作.队列中的元素为int类型. 输入: 每个输入 ...
- An internal error occurred during: "Launching on Tomcat 7.x"
1.首先关闭MyEclipse工作空间.2.然后删除工作空间下的文件.“MyEclipse10\workspace.metadata.plugins\org.eclipse.core.runtime. ...