[CF999E]Reachability from the Capital
题目大意:有一个$n$个点$m$条边的有向图,起点$S$,要求你添加最少的边使得$S$可以到达所有点
题解:缩点,答案就是没有入边的强连通分量个数,注意,如果起点$S$所在的强连通块没有入边则不计入答案
卡点:无
C++ Code:
#include <cstdio>
#define maxn 5010
#define maxm 5010
int head[maxn], cnt;
struct Edge {
int from, to, nxt;
} e[maxm];
inline void add(int a, int b) {
e[++cnt] = (Edge) {a, b, head[a]}; head[a] = cnt;
} int DFN[maxn], low[maxn], idx;
int S[maxn], top, res[maxn], CNT;
bool ins[maxn];
inline int min(int a, int b) {return a < b ? a : b;}
void tarjan(int u) {
DFN[u] = low[u] = ++idx;
ins[S[++top] = u] = true;
int v;
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (!DFN[v]) {
tarjan(v);
low[u] = min(low[u], low[v]);
} else if (ins[v]) low[u] = min(low[u], DFN[v]);
}
if (DFN[u] == low[u]) {
CNT++;
do {
ins[v = S[top--]] = false;
res[v] = CNT;
} while (u != v);
}
}
int n, m, s;
int ind[maxn];
int main() {
scanf("%d%d%d", &n, &m, &s);
for (int i = 0, a, b; i < m; i++) {
scanf("%d%d", &a, &b);
add(a, b);
}
for (int i = 1; i <= n; i++) if (!DFN[i]) tarjan(i);
for (int i = 1; i <= cnt; i++) {
int u = res[e[i].from], v = res[e[i].to];
if (u != v) ind[v]++;
}
int ans = 0;
for (int i = 1; i <= CNT; i++) if (!ind[i]) ans++;
printf("%d\n", ans - (!ind[res[s]]));
return 0;
}
[CF999E]Reachability from the Capital的更多相关文章
- CF999E Reachability from the Capital来自首都的可达性
题目大意: 有n个节点m条边,边都是单向的,请你添加最少的边使得起点s到其他与其他每一个点之间都能互相到达 这题一看就是一个缩点啊 其实对于原有的m条边相连的一些点,如果之前他们已经形成了强连通分量( ...
- E - Reachability from the Capital
E - Reachability from the Capital CodeForces - 999E 题目链接:https://vjudge.net/contest/236513#problem/ ...
- E. Reachability from the Capital dfs暴力
E. Reachability from the Capital 这个题目就是给你一个有向图,给你起点,问增加多少条边让这个图变成一个连通图. 这个因为n只有5000m只有5000 所以可以暴力枚举这 ...
- Reachability from the Capital CodeForces - 999E (强连通)
There are nn cities and mm roads in Berland. Each road connects a pair of cities. The roads in Berla ...
- Reachability from the Capital
题目描述 There are nn cities and mm roads in Berland. Each road connects a pair of cities. The roads in ...
- Reachability from the Capital CodeForces - 999E(强连通分量 缩点 入度为0的点)
题意: 问至少加几条边 能使点s可以到达所有的点 解析: 无向图的连通分量意义就是 在这个连通分量里 没两个点之间至少有一条可以相互到达的路径 所以 我们符合这种关系的点放在一起, 由s向这些点的任 ...
- Reachability from the Capital(Codeforces Round #490 (Div. 3)+tarjan有向图缩点)
题目链接:http://codeforces.com/contest/999/problem/E 题目: 题意:给你n个城市,m条单向边,问你需要加多少条边才能使得从首都s出发能到达任意一个城市. 思 ...
- E. Reachability from the Capital(tarjan+dfs)
求联通分量个数,在dfs一次 #include <iostream> #include <algorithm> #include <cstring> #includ ...
- codeforces#999 E. Reachability from the Capital(图论加边)
题目链接: https://codeforces.com/contest/999/problem/E 题意: 在有向图中加边,让$S$点可以到达所有点 数据范围: $ 1 \leq n \leq 50 ...
随机推荐
- vue面试常被问到的问题整理
1.Vue的双向数据绑定原理是什么? 答 : vue是采用数据劫持,并且使用发布-订阅者的开发模式.原理是观察者observer通过Object.defineProperty()来劫持到各个属性的ge ...
- BZOJ2005: [Noi2010]能量采集(容斥原理 莫比乌斯反演)
Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 4727 Solved: 2877[Submit][Status][Discuss] Descript ...
- 使用poi将excel转换为html,适用本身有导出excel的而现在需要添加网页打印的功能
PoiExcelToHtmlUtil.java import org.apache.poi.POIXMLDocumentPart; import org.apache.poi.hssf.usermod ...
- OpenLDAP部署目录服务
文档信息 目 的:搭建一套完整的OpenLDAP系统,实现账号的统一管理. 1:OpenLDAP服务端的搭建 ...
- px与em的区别,权重的优先级
px与em的区别,权重的优先级 PX特点:px像素(Pixel).相对长度单位.像素px是相对于显示器屏幕分辨率而言的.EM特点:1. em的值并不是固定的:2. em会继承父级元素的字体大小. 权重 ...
- Nginx 配置继承模型
要了解nginx的继承模型,首先需要知道nginx使用多个配置块进行操作.在nginx中,这样的块被称为上下文,例如,放置在服务器上下文中的配置指令驻留在server { }块中,就像放置在http上 ...
- MySQL查询优化 对not in 、in 的优化
因为 not in不走索引,所以不在不得已情况下,就不要使用not in 下面使用 join 来替代not in 做查询 select ID from A where ID not in (selec ...
- 编辑工具_vi
vi/vim平时经常会用到,但是一直没有时间系统的整理下,今天看到了一篇不错的介绍文章.引用下,就当做笔记了,但是不晓得该怎么填引用路径,如有侵权请告知,补上引用路径 01. vi 简介 1.1 学习 ...
- 前端各种mate积累
<!DOCTYPE html> H5标准声明,使用 HTML5 doctype,不区分大小写 <head lang=”en”> 标准的 lang 属性写法 <meta c ...
- vue webpack build 打包过滤console.log()日志
vue cli创建项目在 webpack.prod.conf.js文件 //打包时清除页面中所有打印及debugger断点 new webpack.optimize.UglifyJsPlugin({ ...