题目

给一个N个点M条边的连通无向图,满足每条边最多属于一个环,有Q组询问,每次询问两点之间的最短路径。

输入格式

输入的第一行包含三个整数,分别表示N和M和Q 下接M行,每行三个整数v,u,w表示一条无向边v-u,长度为w 最后Q行,每行两个整数v,u表示一组询问

输出格式

输出Q行,每行一个整数表示询问的答案

输入样例

9 10 2

1 2 1

1 4 1

3 4 1

2 3 1

3 7 1

7 8 2

7 9 2

1 5 3

1 6 4

5 6 1

1 9

5 7

输出样例

5

6

提示

对于100%的数据,N<=10000,Q<=10000

题解

仙人掌的题目,都与树上的方法相联系,再考虑环的影响

首先如果在树上,我们设d[u]表示u到根的距离,两点u,v的距离dis=d[u]+d[v]−2∗d[lca]

现在加上几个环,我们先跑一遍dfs找出所有的环以及算出d[],然后重构树,将环上的点全部连到该环最高点上,距离为环上到最高点的最短路

这样子构建出来的树,我们可以用倍增套用树的方法求解

如果求解时两点倍增时算得的最后祖先属于同一个环,那么就考虑环的贡献

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k; k = ed[k].nxt)
using namespace std;
const int maxn = 10005,maxm = 100005,INF = 1000000000;
inline int RD(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 1) + (out << 3) + c - '0'; c = getchar();}
return out * flag;
} int N,M,Q,h[maxn],ne = 2;
struct EDGE{int to,nxt,w;}ed[maxm];
inline void build(int u,int v,int w){
ed[ne] = (EDGE){v,h[u],w}; h[u] = ne++;
ed[ne] = (EDGE){u,h[v],w}; h[v] = ne++;
} int h2[maxn];
struct E{int to,nxt;}e[2 * maxn];
inline void add(int u,int v){e[ne] = (E){v,h2[u]}; h2[u] = ne++;} int dfn[maxn],low[maxn],d[maxn],dep[maxn],cnt = 0;
int fa[maxn][20],dis[maxn][20];
int cir[maxn],siz[maxn];
void getcir(int rt,int k){
int to = ed[k].to,len = d[to] - d[rt] + ed[k].w;
siz[++siz[0]] = len;
for (int i = to; i != rt; i = fa[i][0]){
add(rt,i);
dis[i][0] = min(d[i] - d[rt],len - d[i] + d[rt]);
cir[i] = siz[0];
}
}
void dfs(int u){
dfn[u] = low[u] = ++cnt; int to;
Redge(u) if ((to = ed[k].to) != fa[u][0]){
if (!dfn[to]){
fa[to][0] = u;
d[to] = d[u] + ed[k].w;
dfs(to);
low[u] = min(low[u],low[to]);
}else low[u] = min(low[u],dfn[to]);
if (dfn[u] < low[to]) add(u,to),dis[to][0] = ed[k].w;
}
Redge(u) if (fa[to = ed[k].to][0] != u && dfn[u] < dfn[to])
getcir(u,k);
}
void dfs2(int u){
REP(i,15){
fa[u][i] = fa[fa[u][i - 1]][i - 1];
dis[u][i] = dis[u][i - 1] + dis[fa[u][i - 1]][i - 1];
}
for (int k = h2[u],to; k; k = e[k].nxt){
fa[to = e[k].to][0] = u; dep[to] = dep[u] + 1;
dfs2(to);
}
}
int solve(int u,int v){
if (dep[u] < dep[v]) swap(u,v);
int ans = 0,D = dep[u] - dep[v];
for (int i = 0; (1 << i) <= D; i++)
if ((1 << i) & D) ans += dis[u][i],u = fa[u][i];
if (u == v) return ans;
for (int i = 15; i >= 0; i--)
if (fa[u][i] != fa[v][i]){
ans += dis[u][i] + dis[v][i];
u = fa[u][i]; v = fa[v][i];
}
if (cir[u] && cir[u] == cir[v])
ans += min(abs(d[u] - d[v]),siz[cir[u]] - abs(d[u] - d[v]));
else ans += dis[u][0] + dis[v][0];
return ans;
}
int main(){
N = RD(); M = RD(); Q = RD(); int a,b,w;
while (M--) a = RD(),b = RD(),w = RD(),build(a,b,w);
ne = 1;
dfs(1);
dep[1] = 1;
dfs2(1);
while (Q--){
a = RD(); b = RD();
printf("%d\n",solve(a,b));
}
return 0;
}

BZOJ2125 最短路 【仙人掌最短路】的更多相关文章

  1. BZOJ.2125.最短路(仙人掌 最短路Dijkstra)

    题目链接 多次询问求仙人掌上两点间的最短路径. 如果是在树上,那么求LCA就可以了. 先做着,看看能不能把它弄成树. 把仙人掌看作一个图(实际上就是),求一遍根节点到每个点的最短路dis[i]. 对于 ...

  2. poj 3463 Sightseeing( 最短路与次短路)

    http://poj.org/problem?id=3463 Sightseeing Time Limit: 2000MS   Memory Limit: 65536K Total Submissio ...

  3. 最短路和次短路问题,dijkstra算法

    /*  *题目大意:  *在一个有向图中,求从s到t两个点之间的最短路和比最短路长1的次短路的条数之和;  *  *算法思想:  *用A*求第K短路,目测会超时,直接在dijkstra算法上求次短路; ...

  4. UESTC30-最短路-Floyd最短路、spfa+链式前向星建图

    最短路 Time Limit: 3000/1000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) 在每年的校赛里,所有进入决赛的同 ...

  5. POJ---3463 Sightseeing 记录最短路和次短路的条数

    Sightseeing Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9247   Accepted: 3242 Descr ...

  6. hdu1688(dijkstra求最短路和次短路)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1688 题意:第k短路,这里要求的是第1短路(即最短路),第2短路(即次短路),以及路径条数,最后如果最 ...

  7. CF 672C 两个人捡瓶子 最短路与次短路思想

    C. Recycling Bottles time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  8. POJ 3463 Sightseeing 【最短路与次短路】

    题目 Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the ...

  9. POJ - 3463 Sightseeing 最短路计数+次短路计数

    F - Sightseeing 传送门: POJ - 3463 分析 一句话题意:给你一个有向图,可能有重边,让你求从s到t最短路的条数,如果次短路的长度比最短路的长度多1,那么在加上次短路的条数. ...

随机推荐

  1. LEA指令与MOV指令区别

    Tips: LEA指令与MOV指令的区别: ① MOV指令是 数据        传送指令-------传送数据 LEA指令是   有效地址 传送指令-------取偏移地址 ② MOV OPRD1 ...

  2. python__基础 : 异常处理与自定义异常

    异常处理方法一般为: try: ------code----- except Exception as e: # 抛出异常之后将会执行 print(e) else: # 没有异常将会执行 print( ...

  3. 1016-01-首页16-计算配图的frame----MJExtention的使用

    -------HWPhoto.h--------------------------------------------- #import <Foundation/Foundation.h> ...

  4. 霍夫圆检测 opencv

    进行霍夫圆变换中有一个API:HoughCircles(). 第五个参数为double类型的minDist(),为霍夫变换检测到的圆的圆心之间的最小距离,即让算法能明显区分的两个不同圆之间的最小距离. ...

  5. Clion 不能杀死进程

    描述 自己使用时发现点了结束按钮后,打开任务管理器,发现刚才运行的程序还在,并没有被杀死. 有时如果一个程序写了死循环,就会出现疯狂占用内存,最后不得不关机重启. 解决方案 这是他的社区有人也有这样的 ...

  6. 笔记-python-调试

    笔记-python-调试 一般在pycharm下调试或使用log查看输出日志,有时小程序不想这么麻烦,也有一些方便使用的调试方式可以使用. 1.      idle调试 1.打开Python shel ...

  7. python基础之继承派生、组合、接口和抽象类

    类的继承与派生 经典类和新式类 在python3中,所有类默认继承object,但凡是继承了object类的子类,以及该子类的子类,都称为新式类(在python3中所有的类都是新式类) 没有继承obj ...

  8. oracle11g导出表时空表导不出解决方案

    oracle11g用exp命令导出数据库表时,有时会发现只导出了一部分表时而且不会报错,原因是有空表没有进行导出,之前一直没有找到方法于是用最笨的方法重新建这些空表,当然在我们实际当中表的数量大时我们 ...

  9. zookeeper: web ui工具的安装

    zookeeper官方没有提供web用户界面,这使很多人在使用zookeeper(动物管理员)同时,并不是很容易的理解zookeeper的数据结构,还好淘宝有位大神用Nodejs写了一个web的ui工 ...

  10. kettle入门(三) 之kettle连接hadoop&hdfs图文详解(转)

    1 引言: 项目最近要引入大数据技术,使用其处理加工日上网话单数据,需要kettle把源系统的文本数据load到hadoop环境中 2 准备工作: 1 首先 要了解支持hadoop的Kettle版本情 ...