题目描述

设有n个大小不等的中空圆盘,按从小到大的顺序从1到n编号。将这n个圆盘任意的迭套在三根立柱上,立柱的编号分别为A、B、C,这个状态称为初始状态。

现在要求找到一种步数最少的移动方案,使得从初始状态转变为目标状态。

移动时有如下要求:

·一次只能移一个盘;

·不允许把大盘移到小盘上面。

输入输出格式

输入格式:

文件第一行是状态中圆盘总数;

第二到第四行分别是初始状态中A、B、C柱上圆盘的个数和从上到下每个圆盘的编号;

第五到第七行分别是目标状态中A、B、C柱上圆盘的个数和从上到下每个圆盘的编号。

输出格式:

每行一步移动方案,格式为:move I from P to Q

最后一行输出最少的步数。

输入输出样例

输入样例#1:

5
3 3 2 1
2 5 4
0
1 2
3 5 4 3
1 1
输出样例#1:

move 1 from A to B
move 2 from A to C
move 1 from B to C
move 3 from A to B
move 1 from C to B
move 2 from C to A
move 1 from B to C
7

说明

圆盘总数≤45

每行的圆盘描述是从下到上的圆盘编号

Solution:

  最近太蠢了,打了个爆搜,爆$0$`~`。。。

  正解思路实在是巧妙,我们处理出每个盘的起始位置和目标位置,然后贪心的想到,我们应该从大到小让盘依次移到目标位置,移动过程中就是让小盘让路(即移到另一个中间盘上),然后每次就层层递归,输出就好了。(怎么会有这么巧的思路~)

代码:

#include<bits/stdc++.h>
#define il inline
#define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=;
int n,fr[N],to[N],ans;
string s="ABC"; il void dfs(int u,int v){
if(fr[u]==v)return;
Bor(i,,u-) dfs(i,-fr[u]-v);
printf("move %d from %c to %c\n",u,s[fr[u]-],s[v-]);
fr[u]=v,ans++;
} int main(){
cin>>n;
int t,x;
For(i,,){
cin>>t;
while(t--)cin>>x,fr[x]=i;
}
For(i,,){
cin>>t;
while(t--)cin>>x,to[x]=i;
}
Bor(i,,n) dfs(i,to[i]);
cout<<ans;
return ;
}

P1242 新汉诺塔的更多相关文章

  1. 洛谷P1242 新汉诺塔(dfs,模拟退火)

    洛谷P1242 新汉诺塔 最开始的思路是贪心地将盘子从大到小依次从初始位置移动到目标位置. 方法和基本的汉诺塔问题的方法一样,对于盘子 \(i\) ,将盘子 \(1\to i-1\) 放置到中间柱子上 ...

  2. P1242 新汉诺塔(搜索+模拟退火)

    题目链接:传送门 题目大意: 汉诺塔,给定n个盘子(n <= 45),起始状态和结束状态,求最小的步数以及路径. 思路: 考虑用dfs贪心地将剩余最大盘归位. #include<bits/ ...

  3. 洛谷 P1242 新汉诺塔

    原题链接 题目描述 设有n个大小不等的中空圆盘,按从小到大的顺序从1到n编号.将这n个圆盘任意的迭套在三根立柱上,立柱的编号分别为A.B.C,这个状态称为初始状态. 现在要求找到一种步数最少的移动方案 ...

  4. 洛谷P1242 新汉诺塔

    传送门啦 首先要将第n个盘子从x到y,那么就要把比n小的盘子全部移到6-x-y,然后将n移到y 仔细想想:6代表的是3根初始柱,3根目标柱. 6-(x+y) 便是我们的中转柱了,因为到这个位置是最优的 ...

  5. 洛谷P1242 新汉诺塔 【神奇的递归】

    题目描述 设有n个大小不等的中空圆盘,按从小到大的顺序从1到n编号.将这n个圆盘任意的迭套在三根立柱上,立柱的编号分别为A.B.C,这个状态称为初始状态. 现在要求找到一种步数最少的移动方案,使得从初 ...

  6. P1242 新汉诺塔(hanio)

    这道题加深了hanio的理解 如果我们要移动第n个盘子.那么就是说,n+1以后(包括n+1)的盘子都已经到位了 #include<iostream> #include<cstdio& ...

  7. 大白_uva10795_新汉诺塔

    题意:给出所有盘子的初态和终态,问最少多少步能从初态走到终态,其余规则和老汉诺塔一样. 思路: 若要把当前最大的盘子m从1移动到3,那么首先必须把剩下的所有盘子1~m-1放到2上,然后把m放到3上. ...

  8. UVA 10795 新汉诺塔问题

    https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  9. UVa新汉诺塔问题(A Different Task,Uva 10795)

    主要需要理递归函数计算 #define MAXN 60+10 #include<iostream> using namespace std; int n,k,S[MAXN],F[MAXN] ...

随机推荐

  1. 当Java遇见了Html--Jsp详解篇

    ###一.什么是Jsp jsp是一种基于文本的程序,全名java server page,其特点是html和java程序共存.执行时jsp会被运行容器编译,编译后的jsp跟servlet一样,因此js ...

  2. jquery 标签中的属性操作

    .arrt() 获取匹配的元素集合中的第一个元素的属性值,或设置每一个元素中的一个或多个属性值. .attr(attributeName) $("em").attr("t ...

  3. cordova-plugin-themeablebrowser 0.2.17 "ThemeableBrowser"ionic跳转外链插件在ios中heardBar会遮住内容的bug

    ionic+angular的app项目中需要在App打开一个外部的url链接,用了这个插件发现在iPhone手机中会出现toolbar挡住url页面内容 解决方法: 在原有基础上加上statusBar ...

  4. BZOJ3288: Mato矩阵(欧拉函数 高斯消元)

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 386  Solved: 296[Submit][Status][Discuss] Descriptio ...

  5. Java分享笔记:FileInputStream流的 read()方法 和 read(byte[] b)方法

    /*------------------------ FileInputStream: ....//输入流,字节流 ....//从硬盘中存在的一个文件中读取内容,读取到程序中 ....//read() ...

  6. Python__for循环和列表生成式的区别

    话不多,上例子 >>> L = [,,] >>> for i in range(len(L)): L[i] = L[i] + L[i-] print(L) #结果 ...

  7. tcl之过程/函数-proc

  8. Form表单提交,js验证

    Form表单提交,js验证 1,  Onclick() 2, Onsubmit() Button标签 input (属性 submit  button )标签 Input type=button    ...

  9. 37-生成 JWT Token

    接到上篇文章 安装扩展插件nuget package方法安装包 使用 ctrl+shift+p打开命令面板 增加这个包,  Microsoft.AspNetCore.Authentication.Jw ...

  10. 13 KNN背景分割器

    传统的前景背景分割方法有GrabCut,分水岭算法,当然也包括一些阈值分割的算法.但是这些算法在应用中往往显得鲁棒性较弱,达不到一个好的分割效果. 现代的背景分割算法融入了机器学习的一些方法来提高分类 ...