P1242 新汉诺塔
题目描述
设有n个大小不等的中空圆盘,按从小到大的顺序从1到n编号。将这n个圆盘任意的迭套在三根立柱上,立柱的编号分别为A、B、C,这个状态称为初始状态。
现在要求找到一种步数最少的移动方案,使得从初始状态转变为目标状态。
移动时有如下要求:
·一次只能移一个盘;
·不允许把大盘移到小盘上面。
输入输出格式
输入格式:
文件第一行是状态中圆盘总数;
第二到第四行分别是初始状态中A、B、C柱上圆盘的个数和从上到下每个圆盘的编号;
第五到第七行分别是目标状态中A、B、C柱上圆盘的个数和从上到下每个圆盘的编号。
输出格式:
每行一步移动方案,格式为:move I from P to Q
最后一行输出最少的步数。
输入输出样例
5
3 3 2 1
2 5 4
0
1 2
3 5 4 3
1 1
move 1 from A to B
move 2 from A to C
move 1 from B to C
move 3 from A to B
move 1 from C to B
move 2 from C to A
move 1 from B to C
7
说明
圆盘总数≤45
每行的圆盘描述是从下到上的圆盘编号
Solution:
最近太蠢了,打了个爆搜,爆$0$`~`。。。
正解思路实在是巧妙,我们处理出每个盘的起始位置和目标位置,然后贪心的想到,我们应该从大到小让盘依次移到目标位置,移动过程中就是让小盘让路(即移到另一个中间盘上),然后每次就层层递归,输出就好了。(怎么会有这么巧的思路~)
代码:
#include<bits/stdc++.h>
#define il inline
#define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=;
int n,fr[N],to[N],ans;
string s="ABC"; il void dfs(int u,int v){
if(fr[u]==v)return;
Bor(i,,u-) dfs(i,-fr[u]-v);
printf("move %d from %c to %c\n",u,s[fr[u]-],s[v-]);
fr[u]=v,ans++;
} int main(){
cin>>n;
int t,x;
For(i,,){
cin>>t;
while(t--)cin>>x,fr[x]=i;
}
For(i,,){
cin>>t;
while(t--)cin>>x,to[x]=i;
}
Bor(i,,n) dfs(i,to[i]);
cout<<ans;
return ;
}
P1242 新汉诺塔的更多相关文章
- 洛谷P1242 新汉诺塔(dfs,模拟退火)
洛谷P1242 新汉诺塔 最开始的思路是贪心地将盘子从大到小依次从初始位置移动到目标位置. 方法和基本的汉诺塔问题的方法一样,对于盘子 \(i\) ,将盘子 \(1\to i-1\) 放置到中间柱子上 ...
- P1242 新汉诺塔(搜索+模拟退火)
题目链接:传送门 题目大意: 汉诺塔,给定n个盘子(n <= 45),起始状态和结束状态,求最小的步数以及路径. 思路: 考虑用dfs贪心地将剩余最大盘归位. #include<bits/ ...
- 洛谷 P1242 新汉诺塔
原题链接 题目描述 设有n个大小不等的中空圆盘,按从小到大的顺序从1到n编号.将这n个圆盘任意的迭套在三根立柱上,立柱的编号分别为A.B.C,这个状态称为初始状态. 现在要求找到一种步数最少的移动方案 ...
- 洛谷P1242 新汉诺塔
传送门啦 首先要将第n个盘子从x到y,那么就要把比n小的盘子全部移到6-x-y,然后将n移到y 仔细想想:6代表的是3根初始柱,3根目标柱. 6-(x+y) 便是我们的中转柱了,因为到这个位置是最优的 ...
- 洛谷P1242 新汉诺塔 【神奇的递归】
题目描述 设有n个大小不等的中空圆盘,按从小到大的顺序从1到n编号.将这n个圆盘任意的迭套在三根立柱上,立柱的编号分别为A.B.C,这个状态称为初始状态. 现在要求找到一种步数最少的移动方案,使得从初 ...
- P1242 新汉诺塔(hanio)
这道题加深了hanio的理解 如果我们要移动第n个盘子.那么就是说,n+1以后(包括n+1)的盘子都已经到位了 #include<iostream> #include<cstdio& ...
- 大白_uva10795_新汉诺塔
题意:给出所有盘子的初态和终态,问最少多少步能从初态走到终态,其余规则和老汉诺塔一样. 思路: 若要把当前最大的盘子m从1移动到3,那么首先必须把剩下的所有盘子1~m-1放到2上,然后把m放到3上. ...
- UVA 10795 新汉诺塔问题
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVa新汉诺塔问题(A Different Task,Uva 10795)
主要需要理递归函数计算 #define MAXN 60+10 #include<iostream> using namespace std; int n,k,S[MAXN],F[MAXN] ...
随机推荐
- Element表单验证(1)
Element表单验证(1) 首先要掌握Element官方那几个表单验证的例子,然后才看下面的教程. Element主要使用了async-validator这个库作为表单验证 async-valida ...
- JNDI整理
JNDI 什么是JNDI JNDI全称为Java Naming and Directory Interface,命名及目录查找接口,是java平台的一种标准扩展,它提供了一系列接口.类和命名空间的概念 ...
- VMware虚拟机安装CentOS 7 Minimal 详细全过程
VMware虚拟机安装CentOS 7 Minimal 详细全过程记录,并进行CentOS7 的网络配置,本次安装的CentOS镜像版本为官方网站下载的 CentOS-7-x86_64-Minimal ...
- 汇编语言编写Hello World
;================================= ; HELLO world DATAS segment string DB 'HELLO World','$' DATAS end ...
- py2exe安装使用
一.简介 py2exe是一个将python脚本转换成windows上的可独立执行的可执行程序(*.exe)的工具,这样,你就可以不用装python而在windows系统上运行这个可执行程序. py2e ...
- oauth2.0协议接口-第一篇-api逻辑
开放平台是支持OAuth2.0和RESTful协议的资源分享平台,经过授权的合作伙伴可以读取和写入资讯.用户.文件.数据库等资源. 1.创建数据库表结构 CMSSyncClient(数据同步客户端) ...
- 平衡二叉查找树 AVL 的实现
不同结构的二叉查找树,查找效率有很大的不同(单支树结构的查找效率退化成了顺序查找).如何解决这个问题呢?关键在于如何最大限度的减小树的深度.正是基于这个想法,平衡二叉树出现了. 平衡二叉树的定义 (A ...
- 【js】【读书笔记】廖雪峰的js教程读书笔记
最近在看廖雪峰的js教程,重温了下js基础,记下一些笔记,好记性不如烂笔头嘛 编写代码尽量使用严格模式 use strict JavaScript引擎是一个事件驱动的执行引擎,代码总是以单线程执行 执 ...
- <Docker学习>6. docker使用网络
在容器中部署一个web应用,外部如何访问? 容器与容器间如何访问? 外部访问容器 容器可以运行一些网络应用,让外部也可以访问的话,需要进行服务器和容器的端口映射 -p 或者 -P -P默认会分配一个4 ...
- JDK学习---深入理解java中的String
本文参考资料: 1.<深入理解jvm虚拟机> 2.<大话数据结构>.<大话设计模式> 3.http://www.cnblogs.com/ITtangtang/p/3 ...