1072: [SCOI2007]排列perm

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 2488  Solved: 1546
[Submit][Status][Discuss]

Description

  给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0)。例如123434有90种排列能
被2整除,其中末位为2的有30种,末位为4的有60种。

Input

  输入第一行是一个整数T,表示测试数据的个数,以下每行一组s和d,中间用空格隔开。s保证只包含数字0, 1
, 2, 3, 4, 5, 6, 7, 8, 9.

Output

  每个数据仅一行,表示能被d整除的排列的个数。

Sample Input

7
000 1
001 1
1234567890 1
123434 2
1234 7
12345 17
12345678 29

Sample Output

1
3
3628800
90
3
6
1398

HINT

在前三个例子中,排列分别有1, 3, 3628800种,它们都是1的倍数。

【限制】

100%的数据满足:s的长度不超过10, 1<=d<=1000, 1<=T<=15

 #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int bin[];
int T,d,len;
int a[],v[],tot[],f[][];
char ch[];
void dp()
{
for(int i=;i<bin[len];i++)
for(int k=;k<d;k++) f[i][k]=;
f[][]=;
for(int i=;i<bin[len];i++)
for(int k=;k<d;k++)
if(f[i][k])
for(int x=;x<=len;x++)
if((bin[x-]&i)==) f[i|bin[x-]][(a[x]+k*)%d]+=f[i][k];
}
int main()
{
bin[]=;
for(int i=;i<;i++)bin[i]=bin[i-]<<;
T=read();
while(T--)
{
scanf("%s",ch+);
d=read();
len=strlen(ch+);
for(int i=;i<=;i++)v[i]=,tot[i]=;
for(int i=;i<=len;i++)
{
a[i]=ch[i]-'';
v[a[i]]*=(++tot[a[i]]);
}
dp();
for(int i=;i<=;i++)f[bin[len]-][]/=v[i];
printf("%d\n",f[bin[len]-][]);
}
return ;
}

[BZOJ1072][SCOI2007]排列perm 状压dp的更多相关文章

  1. B1072 [SCOI2007]排列perm 状压dp

    很简单的状压dp,但是有一个事,就是...我数组开大了一点,然后每次memset就会T,然后开小就好了!!!震惊!以后小心点这个问题. 题干: Description 给一个数字串s和正整数d, 统计 ...

  2. BZOJ 1072 [SCOI2007]排列perm ——状压DP

    [题目分析] 没什么好说的,水题. 代码比较丑,结果需要开long long 时间爆炸 [代码] #include <cstdio> #include <cstring> #i ...

  3. bzoj 1072: [SCOI2007]排列perm 状压dp

    code: #include <bits/stdc++.h> #define N 1005 using namespace std; void setIO(string s) { stri ...

  4. 暑假集训Day 4 P4163 [SCOI2007]排列 (状压dp)

    状压dp (看到s的长度不超过10就很容易想到是状压dp了 但是这个题的状态转移方程比较特殊) 题目大意 给一个数字串 s 和正整数 d, 统计 s 有多少种不同的排列能被 d 整除(可以有前导 0) ...

  5. BZOJ 1072: [SCOI2007]排列perm 状态压缩DP

    1072: [SCOI2007]排列perm Description 给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0).例如123434有90种排列能被2整除,其中末位为 ...

  6. [bzoj1072] [SCOI2007]排列perm

    有一种暴力算法就是直接枚举. 正解就是状压dp 令f[i][j]:i:使用的数位的状态j:当前的模数 边界:f[0][0] = 1; f[i|1<<k][j*10+k % n] += f[ ...

  7. [bzoj1072][SCOI2007][排列perm] (状态压缩+数位dp+排列去重)

    Description 给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0).例如123434有90种排列能被2整除,其中末位为2的有30种,末位为4的有60种. Input ...

  8. 【枚举】bzoj1072 [SCOI2007]排列perm

    暴力,next_permutation函数用于枚举出下一个排列.sscanf函数用于将字符串转化成数字. #include<cstdio> #include<cstring> ...

  9. [bzoj1072][SCOI2007]排列(状态压缩DP)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1072 分析:看了题解才知道,状态的设计很巧妙,用余数表示,即f[i][j]表示二进制状 ...

随机推荐

  1. 安装完最小化 RHEL/CentOS 7 后需要做的 30 件事情(二)

    本文导航 -7. 安装 PHP0 -8. 安装 MariaDB 数据库 -9. 安装和配置 SSH 服务器 -10. 安装 GCC (GNU 编译器集) -11. 安装 Java 7. 安装 PHP ...

  2. BP神经网络的手写数字识别

    BP神经网络的手写数字识别 ANN 人工神经网络算法在实践中往往给人难以琢磨的印象,有句老话叫“出来混总是要还的”,大概是由于具有很强的非线性模拟和处理能力,因此作为代价上帝让它“黑盒”化了.作为一种 ...

  3. java和c/c++

    写c/c++的人,羡慕java可以自己管理内存 写java的人,羡慕c/c++没有gc问题

  4. Pythontutor:可视化代码在内存的执行过程

    http://www.pythontutor.com/visualize.html今天去问开发一个Python浅拷贝的问题,开发给了一个神器,可以可视化代码在内存的执行过程,一看即懂,太NB了!~真是 ...

  5. IDEA调试快捷键

    F9            resume programe 恢复程序 F8            Step Over 相当于eclipse的f6      跳到下一步 Ctrl+Shift+F,全局查 ...

  6. mybatis批量添加、批量删除

    <!-- 批量添加 --> <insert id="insertNameListSynHisBatch" parameterType="java.uti ...

  7. java初学2

    1.数组操作类Arrays与System public static void arraycopy(Object src, int srcPos, Object dest,int destPos,in ...

  8. django通用视图之TemplateView和ListView简单介绍

    django支持类视图,与此同时django为我们提供了许多非常好用的通用视图供我们使用,这其中TemplateView.ListView和DetailView是我们经常使用到的,这里就对Templa ...

  9. [转] mysql分区性能初探

    本文转自:http://www.cnblogs.com/acpp/archive/2010/08/09/1795464.html 一,      分区概念  分区允许根据指定的规则,跨文件系统分配单个 ...

  10. 学习go语言第一天

    今天先下载了go语言,FQ去下载的,一开始想用eclipse,然后下载了go插件,结果出现错误,我英语水平有限,就换了liteIDE,感觉还不错,go语言环境变量因为我是msi安装的,好像可以不用自己 ...