基于版本jdk1.7.0_80

java.util.concurrent.ArrayBlockingQueue

代码如下

/*
* ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*/ /*
*
*
*
*
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/ package java.util.concurrent;
import java.util.concurrent.locks.*;
import java.util.*; /**
* A bounded {@linkplain BlockingQueue blocking queue} backed by an
* array. This queue orders elements FIFO (first-in-first-out). The
* <em>head</em> of the queue is that element that has been on the
* queue the longest time. The <em>tail</em> of the queue is that
* element that has been on the queue the shortest time. New elements
* are inserted at the tail of the queue, and the queue retrieval
* operations obtain elements at the head of the queue.
*
* <p>This is a classic &quot;bounded buffer&quot;, in which a
* fixed-sized array holds elements inserted by producers and
* extracted by consumers. Once created, the capacity cannot be
* changed. Attempts to {@code put} an element into a full queue
* will result in the operation blocking; attempts to {@code take} an
* element from an empty queue will similarly block.
*
* <p>This class supports an optional fairness policy for ordering
* waiting producer and consumer threads. By default, this ordering
* is not guaranteed. However, a queue constructed with fairness set
* to {@code true} grants threads access in FIFO order. Fairness
* generally decreases throughput but reduces variability and avoids
* starvation.
*
* <p>This class and its iterator implement all of the
* <em>optional</em> methods of the {@link Collection} and {@link
* Iterator} interfaces.
*
* <p>This class is a member of the
* <a href="{@docRoot}/../technotes/guides/collections/index.html">
* Java Collections Framework</a>.
*
* @since 1.5
* @author Doug Lea
* @param <E> the type of elements held in this collection
*/
public class ArrayBlockingQueue<E> extends AbstractQueue<E>
implements BlockingQueue<E>, java.io.Serializable { /**
* Serialization ID. This class relies on default serialization
* even for the items array, which is default-serialized, even if
* it is empty. Otherwise it could not be declared final, which is
* necessary here.
*/
private static final long serialVersionUID = -817911632652898426L; /** The queued items */
final Object[] items; /** items index for next take, poll, peek or remove */
int takeIndex; /** items index for next put, offer, or add */
int putIndex; /** Number of elements in the queue */
int count; /*
* Concurrency control uses the classic two-condition algorithm
* found in any textbook.
*/ /** Main lock guarding all access */
final ReentrantLock lock;
/** Condition for waiting takes */
private final Condition notEmpty;
/** Condition for waiting puts */
private final Condition notFull; // Internal helper methods /**
* Circularly increment i.
*/
final int inc(int i) {
return (++i == items.length) ? 0 : i;
} /**
* Circularly decrement i.
*/
final int dec(int i) {
return ((i == 0) ? items.length : i) - 1;
} @SuppressWarnings("unchecked")
static <E> E cast(Object item) {
return (E) item;
} /**
* Returns item at index i.
*/
final E itemAt(int i) {
return this.<E>cast(items[i]);
} /**
* Throws NullPointerException if argument is null.
*
* @param v the element
*/
private static void checkNotNull(Object v) {
if (v == null)
throw new NullPointerException();
} /**
* Inserts element at current put position, advances, and signals.
* Call only when holding lock.
*/
private void insert(E x) {
items[putIndex] = x;
putIndex = inc(putIndex);
++count;
notEmpty.signal();
} /**
* Extracts element at current take position, advances, and signals.
* Call only when holding lock.
*/
private E extract() {
final Object[] items = this.items;
E x = this.<E>cast(items[takeIndex]);
items[takeIndex] = null;
takeIndex = inc(takeIndex);
--count;
notFull.signal();
return x;
} /**
* Deletes item at position i.
* Utility for remove and iterator.remove.
* Call only when holding lock.
*/
void removeAt(int i) {
final Object[] items = this.items;
// if removing front item, just advance
if (i == takeIndex) {
items[takeIndex] = null;
takeIndex = inc(takeIndex);
} else {
// slide over all others up through putIndex.
for (;;) {
int nexti = inc(i);
if (nexti != putIndex) {
items[i] = items[nexti];
i = nexti;
} else {
items[i] = null;
putIndex = i;
break;
}
}
}
--count;
notFull.signal();
} /**
* Creates an {@code ArrayBlockingQueue} with the given (fixed)
* capacity and default access policy.
*
* @param capacity the capacity of this queue
* @throws IllegalArgumentException if {@code capacity < 1}
*/
public ArrayBlockingQueue(int capacity) {
this(capacity, false);
} /**
* Creates an {@code ArrayBlockingQueue} with the given (fixed)
* capacity and the specified access policy.
*
* @param capacity the capacity of this queue
* @param fair if {@code true} then queue accesses for threads blocked
* on insertion or removal, are processed in FIFO order;
* if {@code false} the access order is unspecified.
* @throws IllegalArgumentException if {@code capacity < 1}
*/
public ArrayBlockingQueue(int capacity, boolean fair) {
if (capacity <= 0)
throw new IllegalArgumentException();
this.items = new Object[capacity];
lock = new ReentrantLock(fair);
notEmpty = lock.newCondition();
notFull = lock.newCondition();
} /**
* Creates an {@code ArrayBlockingQueue} with the given (fixed)
* capacity, the specified access policy and initially containing the
* elements of the given collection,
* added in traversal order of the collection's iterator.
*
* @param capacity the capacity of this queue
* @param fair if {@code true} then queue accesses for threads blocked
* on insertion or removal, are processed in FIFO order;
* if {@code false} the access order is unspecified.
* @param c the collection of elements to initially contain
* @throws IllegalArgumentException if {@code capacity} is less than
* {@code c.size()}, or less than 1.
* @throws NullPointerException if the specified collection or any
* of its elements are null
*/
public ArrayBlockingQueue(int capacity, boolean fair,
Collection<? extends E> c) {
this(capacity, fair); final ReentrantLock lock = this.lock;
lock.lock(); // Lock only for visibility, not mutual exclusion
try {
int i = 0;
try {
for (E e : c) {
checkNotNull(e);
items[i++] = e;
}
} catch (ArrayIndexOutOfBoundsException ex) {
throw new IllegalArgumentException();
}
count = i;
putIndex = (i == capacity) ? 0 : i;
} finally {
lock.unlock();
}
} /**
* Inserts the specified element at the tail of this queue if it is
* possible to do so immediately without exceeding the queue's capacity,
* returning {@code true} upon success and throwing an
* {@code IllegalStateException} if this queue is full.
*
* @param e the element to add
* @return {@code true} (as specified by {@link Collection#add})
* @throws IllegalStateException if this queue is full
* @throws NullPointerException if the specified element is null
*/
public boolean add(E e) {
return super.add(e);
} /**
* Inserts the specified element at the tail of this queue if it is
* possible to do so immediately without exceeding the queue's capacity,
* returning {@code true} upon success and {@code false} if this queue
* is full. This method is generally preferable to method {@link #add},
* which can fail to insert an element only by throwing an exception.
*
* @throws NullPointerException if the specified element is null
*/
public boolean offer(E e) {
checkNotNull(e);
final ReentrantLock lock = this.lock;
lock.lock();
try {
if (count == items.length)
return false;
else {
insert(e);
return true;
}
} finally {
lock.unlock();
}
} /**
* Inserts the specified element at the tail of this queue, waiting
* for space to become available if the queue is full.
*
* @throws InterruptedException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
*/
public void put(E e) throws InterruptedException {
checkNotNull(e);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
while (count == items.length)
notFull.await();
insert(e);
} finally {
lock.unlock();
}
} /**
* Inserts the specified element at the tail of this queue, waiting
* up to the specified wait time for space to become available if
* the queue is full.
*
* @throws InterruptedException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
*/
public boolean offer(E e, long timeout, TimeUnit unit)
throws InterruptedException { checkNotNull(e);
long nanos = unit.toNanos(timeout);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
while (count == items.length) {
if (nanos <= 0)
return false;
nanos = notFull.awaitNanos(nanos);
}
insert(e);
return true;
} finally {
lock.unlock();
}
} public E poll() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return (count == 0) ? null : extract();
} finally {
lock.unlock();
}
} public E take() throws InterruptedException {
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
while (count == 0)
notEmpty.await();
return extract();
} finally {
lock.unlock();
}
} public E poll(long timeout, TimeUnit unit) throws InterruptedException {
long nanos = unit.toNanos(timeout);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
while (count == 0) {
if (nanos <= 0)
return null;
nanos = notEmpty.awaitNanos(nanos);
}
return extract();
} finally {
lock.unlock();
}
} public E peek() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return (count == 0) ? null : itemAt(takeIndex);
} finally {
lock.unlock();
}
} // this doc comment is overridden to remove the reference to collections
// greater in size than Integer.MAX_VALUE
/**
* Returns the number of elements in this queue.
*
* @return the number of elements in this queue
*/
public int size() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return count;
} finally {
lock.unlock();
}
} // this doc comment is a modified copy of the inherited doc comment,
// without the reference to unlimited queues.
/**
* Returns the number of additional elements that this queue can ideally
* (in the absence of memory or resource constraints) accept without
* blocking. This is always equal to the initial capacity of this queue
* less the current {@code size} of this queue.
*
* <p>Note that you <em>cannot</em> always tell if an attempt to insert
* an element will succeed by inspecting {@code remainingCapacity}
* because it may be the case that another thread is about to
* insert or remove an element.
*/
public int remainingCapacity() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return items.length - count;
} finally {
lock.unlock();
}
} /**
* Removes a single instance of the specified element from this queue,
* if it is present. More formally, removes an element {@code e} such
* that {@code o.equals(e)}, if this queue contains one or more such
* elements.
* Returns {@code true} if this queue contained the specified element
* (or equivalently, if this queue changed as a result of the call).
*
* <p>Removal of interior elements in circular array based queues
* is an intrinsically slow and disruptive operation, so should
* be undertaken only in exceptional circumstances, ideally
* only when the queue is known not to be accessible by other
* threads.
*
* @param o element to be removed from this queue, if present
* @return {@code true} if this queue changed as a result of the call
*/
public boolean remove(Object o) {
if (o == null) return false;
final Object[] items = this.items;
final ReentrantLock lock = this.lock;
lock.lock();
try {
for (int i = takeIndex, k = count; k > 0; i = inc(i), k--) {
if (o.equals(items[i])) {
removeAt(i);
return true;
}
}
return false;
} finally {
lock.unlock();
}
} /**
* Returns {@code true} if this queue contains the specified element.
* More formally, returns {@code true} if and only if this queue contains
* at least one element {@code e} such that {@code o.equals(e)}.
*
* @param o object to be checked for containment in this queue
* @return {@code true} if this queue contains the specified element
*/
public boolean contains(Object o) {
if (o == null) return false;
final Object[] items = this.items;
final ReentrantLock lock = this.lock;
lock.lock();
try {
for (int i = takeIndex, k = count; k > 0; i = inc(i), k--)
if (o.equals(items[i]))
return true;
return false;
} finally {
lock.unlock();
}
} /**
* Returns an array containing all of the elements in this queue, in
* proper sequence.
*
* <p>The returned array will be "safe" in that no references to it are
* maintained by this queue. (In other words, this method must allocate
* a new array). The caller is thus free to modify the returned array.
*
* <p>This method acts as bridge between array-based and collection-based
* APIs.
*
* @return an array containing all of the elements in this queue
*/
public Object[] toArray() {
final Object[] items = this.items;
final ReentrantLock lock = this.lock;
lock.lock();
try {
final int count = this.count;
Object[] a = new Object[count];
for (int i = takeIndex, k = 0; k < count; i = inc(i), k++)
a[k] = items[i];
return a;
} finally {
lock.unlock();
}
} /**
* Returns an array containing all of the elements in this queue, in
* proper sequence; the runtime type of the returned array is that of
* the specified array. If the queue fits in the specified array, it
* is returned therein. Otherwise, a new array is allocated with the
* runtime type of the specified array and the size of this queue.
*
* <p>If this queue fits in the specified array with room to spare
* (i.e., the array has more elements than this queue), the element in
* the array immediately following the end of the queue is set to
* {@code null}.
*
* <p>Like the {@link #toArray()} method, this method acts as bridge between
* array-based and collection-based APIs. Further, this method allows
* precise control over the runtime type of the output array, and may,
* under certain circumstances, be used to save allocation costs.
*
* <p>Suppose {@code x} is a queue known to contain only strings.
* The following code can be used to dump the queue into a newly
* allocated array of {@code String}:
*
* <pre>
* String[] y = x.toArray(new String[0]);</pre>
*
* Note that {@code toArray(new Object[0])} is identical in function to
* {@code toArray()}.
*
* @param a the array into which the elements of the queue are to
* be stored, if it is big enough; otherwise, a new array of the
* same runtime type is allocated for this purpose
* @return an array containing all of the elements in this queue
* @throws ArrayStoreException if the runtime type of the specified array
* is not a supertype of the runtime type of every element in
* this queue
* @throws NullPointerException if the specified array is null
*/
@SuppressWarnings("unchecked")
public <T> T[] toArray(T[] a) {
final Object[] items = this.items;
final ReentrantLock lock = this.lock;
lock.lock();
try {
final int count = this.count;
final int len = a.length;
if (len < count)
a = (T[])java.lang.reflect.Array.newInstance(
a.getClass().getComponentType(), count);
for (int i = takeIndex, k = 0; k < count; i = inc(i), k++)
a[k] = (T) items[i];
if (len > count)
a[count] = null;
return a;
} finally {
lock.unlock();
}
} public String toString() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
int k = count;
if (k == 0)
return "[]"; StringBuilder sb = new StringBuilder();
sb.append('[');
for (int i = takeIndex; ; i = inc(i)) {
Object e = items[i];
sb.append(e == this ? "(this Collection)" : e);
if (--k == 0)
return sb.append(']').toString();
sb.append(',').append(' ');
}
} finally {
lock.unlock();
}
} /**
* Atomically removes all of the elements from this queue.
* The queue will be empty after this call returns.
*/
public void clear() {
final Object[] items = this.items;
final ReentrantLock lock = this.lock;
lock.lock();
try {
for (int i = takeIndex, k = count; k > 0; i = inc(i), k--)
items[i] = null;
count = 0;
putIndex = 0;
takeIndex = 0;
notFull.signalAll();
} finally {
lock.unlock();
}
} /**
* @throws UnsupportedOperationException {@inheritDoc}
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
* @throws IllegalArgumentException {@inheritDoc}
*/
public int drainTo(Collection<? super E> c) {
checkNotNull(c);
if (c == this)
throw new IllegalArgumentException();
final Object[] items = this.items;
final ReentrantLock lock = this.lock;
lock.lock();
try {
int i = takeIndex;
int n = 0;
int max = count;
while (n < max) {
c.add(this.<E>cast(items[i]));
items[i] = null;
i = inc(i);
++n;
}
if (n > 0) {
count = 0;
putIndex = 0;
takeIndex = 0;
notFull.signalAll();
}
return n;
} finally {
lock.unlock();
}
} /**
* @throws UnsupportedOperationException {@inheritDoc}
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
* @throws IllegalArgumentException {@inheritDoc}
*/
public int drainTo(Collection<? super E> c, int maxElements) {
checkNotNull(c);
if (c == this)
throw new IllegalArgumentException();
if (maxElements <= 0)
return 0;
final Object[] items = this.items;
final ReentrantLock lock = this.lock;
lock.lock();
try {
int i = takeIndex;
int n = 0;
int max = (maxElements < count) ? maxElements : count;
while (n < max) {
c.add(this.<E>cast(items[i]));
items[i] = null;
i = inc(i);
++n;
}
if (n > 0) {
count -= n;
takeIndex = i;
notFull.signalAll();
}
return n;
} finally {
lock.unlock();
}
} /**
* Returns an iterator over the elements in this queue in proper sequence.
* The elements will be returned in order from first (head) to last (tail).
*
* <p>The returned {@code Iterator} is a "weakly consistent" iterator that
* will never throw {@link java.util.ConcurrentModificationException
* ConcurrentModificationException},
* and guarantees to traverse elements as they existed upon
* construction of the iterator, and may (but is not guaranteed to)
* reflect any modifications subsequent to construction.
*
* @return an iterator over the elements in this queue in proper sequence
*/
public Iterator<E> iterator() {
return new Itr();
} /**
* Iterator for ArrayBlockingQueue. To maintain weak consistency
* with respect to puts and takes, we (1) read ahead one slot, so
* as to not report hasNext true but then not have an element to
* return -- however we later recheck this slot to use the most
* current value; (2) ensure that each array slot is traversed at
* most once (by tracking "remaining" elements); (3) skip over
* null slots, which can occur if takes race ahead of iterators.
* However, for circular array-based queues, we cannot rely on any
* well established definition of what it means to be weakly
* consistent with respect to interior removes since these may
* require slot overwrites in the process of sliding elements to
* cover gaps. So we settle for resiliency, operating on
* established apparent nexts, which may miss some elements that
* have moved between calls to next.
*/
private class Itr implements Iterator<E> {
private int remaining; // Number of elements yet to be returned
private int nextIndex; // Index of element to be returned by next
private E nextItem; // Element to be returned by next call to next
private E lastItem; // Element returned by last call to next
private int lastRet; // Index of last element returned, or -1 if none Itr() {
final ReentrantLock lock = ArrayBlockingQueue.this.lock;
lock.lock();
try {
lastRet = -1;
if ((remaining = count) > 0)
nextItem = itemAt(nextIndex = takeIndex);
} finally {
lock.unlock();
}
} public boolean hasNext() {
return remaining > 0;
} public E next() {
final ReentrantLock lock = ArrayBlockingQueue.this.lock;
lock.lock();
try {
if (remaining <= 0)
throw new NoSuchElementException();
lastRet = nextIndex;
E x = itemAt(nextIndex); // check for fresher value
if (x == null) {
x = nextItem; // we are forced to report old value
lastItem = null; // but ensure remove fails
}
else
lastItem = x;
while (--remaining > 0 && // skip over nulls
(nextItem = itemAt(nextIndex = inc(nextIndex))) == null)
;
return x;
} finally {
lock.unlock();
}
} public void remove() {
final ReentrantLock lock = ArrayBlockingQueue.this.lock;
lock.lock();
try {
int i = lastRet;
if (i == -1)
throw new IllegalStateException();
lastRet = -1;
E x = lastItem;
lastItem = null;
// only remove if item still at index
if (x != null && x == items[i]) {
boolean removingHead = (i == takeIndex);
removeAt(i);
if (!removingHead)
nextIndex = dec(nextIndex);
}
} finally {
lock.unlock();
}
}
} }

0. ArrayBlockingQueue简介

用循环数组实现的有界阻塞队列,线程安全。初始化时要求设定容量,在队列满时继续put元素会被阻塞,在队列为空时继续poll元素也会被阻塞。

ArrayBlockingQueue也提供了非阻塞以及可中断的插入/提取元素的方法。

1. 接口分析

ArrayBlockingQueue继承于AbstractQueue抽象类

BlockingQueue<E>(阻塞队列语义), java.io.Serializable接口

2. ArrayBlockingQueue原理概述

ArrayBlockingQueue内部维护了一个ReentrantLock对象lock,lock有两个Condition:notEmpty与notFull,所有对ArrayBlockingQueue的操作都会用lock加锁,所以ArrayBlockingQueue是线程安全的。

而在调用ArrayBlockingQueue的put方法时,会检查队列长度,如果队列已满,则调用notFull.await等待。在调用ArrayBlockingQueue的poll方法时,则会直接调用notFull.signal,如果有线程在notFull.await上等待,这个线程就会被唤醒,从而实现了队列满时继续put元素会被阻塞的语义。

在队列为空时继续poll元素也会被阻塞的语义的实现原理也是类似的。

3. ArrayBlockingQueue的关键方法解析

    /** The queued items */
final Object[] items;//底层存储容器 /** items index for next take, poll, peek or remove */
int takeIndex; /** items index for next put, offer, or add */
int putIndex; /** Number of elements in the queue */
int count; /*
* Concurrency control uses the classic two-condition algorithm
* found in any textbook.
*/ /** Main lock guarding all access */
final ReentrantLock lock;//全局锁
/** Condition for waiting takes */
private final Condition notEmpty;
/** Condition for waiting puts */
private final Condition notFull; // Internal helper methods /**
* Circularly increment i.
*/
final int inc(int i) {
return (++i == items.length) ? 0 : i;
} /**
* Circularly decrement i.
*/
final int dec(int i) {
return ((i == 0) ? items.length : i) - 1;
} /**
* Inserts element at current put position, advances, and signals.
* Call only when holding lock.
*/
private void insert(E x) {//向队列中插入元素
items[putIndex] = x;//把元素放到putIndex对应的位置上
putIndex = inc(putIndex);//更新putIndex
++count;//计数器自加
notEmpty.signal();//唤醒可能在notEmpty条件上等待的线程
} /**
* Extracts element at current take position, advances, and signals.
* Call only when holding lock.
*/
private E extract() {//从队列中提取元素
final Object[] items = this.items;
E x = this.<E>cast(items[takeIndex]);//获取takeIndex位置上的元素
items[takeIndex] = null;//takeIndex位置上的元素清空,便于gc
takeIndex = inc(takeIndex);//更新takeIndex
--count;//计数器自减
notFull.signal();//唤醒可能在notFull条件上等待的线程
return x;
} /**
* Deletes item at position i.
* Utility for remove and iterator.remove.
* Call only when holding lock.
*/
void removeAt(int i) {
final Object[] items = this.items;
// if removing front item, just advance
if (i == takeIndex) {
items[takeIndex] = null;
takeIndex = inc(takeIndex);
} else {
// slide over all others up through putIndex.
for (;;) {
int nexti = inc(i);
if (nexti != putIndex) {
items[i] = items[nexti];
i = nexti;
} else {
items[i] = null;
putIndex = i;
break;
}
}
}
--count;//计数器自减
notFull.signal();//唤醒可能在notFull条件上等待的线程
} /**
* Inserts the specified element at the tail of this queue if it is
* possible to do so immediately without exceeding the queue's capacity,
* returning {@code true} upon success and {@code false} if this queue
* is full. This method is generally preferable to method {@link #add},
* which can fail to insert an element only by throwing an exception.
*
* @throws NullPointerException if the specified element is null
*/
public boolean offer(E e) {//不阻塞的插入方法
checkNotNull(e);
final ReentrantLock lock = this.lock;//加上全局锁,保证只有当前线程在操作
lock.lock();
try {
if (count == items.length)//如果队列已满,直接返回false,不阻塞
return false;
else {
insert(e);
return true;
}
} finally {
lock.unlock();//解锁
}
} /**
* Inserts the specified element at the tail of this queue, waiting
* for space to become available if the queue is full.
*
* @throws InterruptedException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
*/
public void put(E e) throws InterruptedException {//可中断的阻塞插入方法
checkNotNull(e);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();//加上可中断的全局锁
try {
while (count == items.length)//如果队列已满,在notFull信号量上等待
notFull.await();
insert(e);//此时队列必然不满,可以安全插入元素
} finally {
lock.unlock();//解锁
}
} /**
* Inserts the specified element at the tail of this queue, waiting
* up to the specified wait time for space to become available if
* the queue is full.
*
* @throws InterruptedException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
*/
public boolean offer(E e, long timeout, TimeUnit unit)//可中断可超时的阻塞插入方法
throws InterruptedException { checkNotNull(e);
long nanos = unit.toNanos(timeout);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();//加上可中断的全局锁
try {
while (count == items.length) {//如果队列已满,在notFull条件上等待指定的时间
if (nanos <= 0)//如果已超时,返回false
return false;
nanos = notFull.awaitNanos(nanos);
}
insert(e);//此时队列必然不满,可以安全插入元素
return true;
} finally {
lock.unlock();//解锁
}
} public E poll() {//不阻塞的提取方法
final ReentrantLock lock = this.lock;
lock.lock();//全局锁
try {
return (count == 0) ? null : extract();//如果队列为空,直接返回null,否则正常提取元素
} finally {
lock.unlock();//解锁
}
} public E take() throws InterruptedException {//可中断的阻塞提取方法
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();//加上可中断的全局锁
try {
while (count == 0)//如果队列为空,在notEmpty条件上等待
notEmpty.await();
return extract();//此时队列必然不为空,提取元素并返回
} finally {
lock.unlock();//解锁
}
} public E poll(long timeout, TimeUnit unit) throws InterruptedException {//可中断可超时的阻塞提取方法
long nanos = unit.toNanos(timeout);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();//加上可中断的全局锁
try {
while (count == 0) {//如果队列为空,在notEmptyl条件上等待指定的时间
if (nanos <= 0)//如果已超时,返回null
return null;
nanos = notEmpty.awaitNanos(nanos);
}
return extract();//此时队列必然不空,可以安全提取元素
} finally {
lock.unlock();
}
} public E peek() {//获取队首元素
final ReentrantLock lock = this.lock;
lock.lock();//加上全局锁,确保线程安全
try {
return (count == 0) ? null : itemAt(takeIndex);//获取队首元素
} finally {
lock.unlock();
}
} // this doc comment is overridden to remove the reference to collections
// greater in size than Integer.MAX_VALUE
/**
* Returns the number of elements in this queue.
*
* @return the number of elements in this queue
*/
public int size() {
final ReentrantLock lock = this.lock;
lock.lock();//加上全局锁,确保线程安全
try {
return count;
} finally {
lock.unlock();
}
} // this doc comment is a modified copy of the inherited doc comment,
// without the reference to unlimited queues.
/**
* Returns the number of additional elements that this queue can ideally
* (in the absence of memory or resource constraints) accept without
* blocking. This is always equal to the initial capacity of this queue
* less the current {@code size} of this queue.
*
* <p>Note that you <em>cannot</em> always tell if an attempt to insert
* an element will succeed by inspecting {@code remainingCapacity}
* because it may be the case that another thread is about to
* insert or remove an element.
*/
public int remainingCapacity() {
final ReentrantLock lock = this.lock;
lock.lock();//加上全局锁,确保线程安全
try {
return items.length - count;
} finally {
lock.unlock();
}
} /**
* Removes a single instance of the specified element from this queue,
* if it is present. More formally, removes an element {@code e} such
* that {@code o.equals(e)}, if this queue contains one or more such
* elements.
* Returns {@code true} if this queue contained the specified element
* (or equivalently, if this queue changed as a result of the call).
*
* <p>Removal of interior elements in circular array based queues
* is an intrinsically slow and disruptive operation, so should
* be undertaken only in exceptional circumstances, ideally
* only when the queue is known not to be accessible by other
* threads.
*
* @param o element to be removed from this queue, if present
* @return {@code true} if this queue changed as a result of the call
*/
public boolean remove(Object o) {
if (o == null) return false;
final Object[] items = this.items;
final ReentrantLock lock = this.lock;//加上全局锁,确保线程安全
lock.lock();
try {
for (int i = takeIndex, k = count; k > 0; i = inc(i), k--) {
if (o.equals(items[i])) {
removeAt(i);
return true;
}
}
return false;
} finally {
lock.unlock();
}
} /**
* Returns {@code true} if this queue contains the specified element.
* More formally, returns {@code true} if and only if this queue contains
* at least one element {@code e} such that {@code o.equals(e)}.
*
* @param o object to be checked for containment in this queue
* @return {@code true} if this queue contains the specified element
*/
public boolean contains(Object o) {
if (o == null) return false;
final Object[] items = this.items;
final ReentrantLock lock = this.lock;
lock.lock();//加上全局锁,确保线程安全
try {
for (int i = takeIndex, k = count; k > 0; i = inc(i), k--)
if (o.equals(items[i]))
return true;
return false;
} finally {
lock.unlock();
}
} /**
* Atomically removes all of the elements from this queue.
* The queue will be empty after this call returns.
*/
public void clear() {
final Object[] items = this.items;
final ReentrantLock lock = this.lock;
lock.lock();//加上全局锁,确保线程安全
try {//清空所有元素,并唤醒在notFull条件上等待的所有线程
for (int i = takeIndex, k = count; k > 0; i = inc(i), k--)
items[i] = null;
count = 0;
putIndex = 0;
takeIndex = 0;
notFull.signalAll();
} finally {
lock.unlock();
}
} /**
* @throws UnsupportedOperationException {@inheritDoc}
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
* @throws IllegalArgumentException {@inheritDoc}
*/
public int drainTo(Collection<? super E> c) {
checkNotNull(c);
if (c == this)
throw new IllegalArgumentException();
final Object[] items = this.items;
final ReentrantLock lock = this.lock;
lock.lock();//加上全局锁,确保线程安全
try {//将所有元素转移到c中,并唤醒在notFull条件上等待的所有线程
int i = takeIndex;
int n = 0;
int max = count;
while (n < max) {
c.add(this.<E>cast(items[i]));
items[i] = null;
i = inc(i);
++n;
}
if (n > 0) {
count = 0;
putIndex = 0;
takeIndex = 0;
notFull.signalAll();
}
return n;
} finally {
lock.unlock();
}
} /**
* @throws UnsupportedOperationException {@inheritDoc}
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
* @throws IllegalArgumentException {@inheritDoc}
*/
public int drainTo(Collection<? super E> c, int maxElements) {
checkNotNull(c);
if (c == this)
throw new IllegalArgumentException();
if (maxElements <= 0)
return 0;
final Object[] items = this.items;
final ReentrantLock lock = this.lock;
lock.lock();//加上全局锁,确保线程安全
try {//将n个元素转移到c中,并唤醒在notFull条件上等待的所有线程
int i = takeIndex;
int n = 0;
int max = (maxElements < count) ? maxElements : count;
while (n < max) {
c.add(this.<E>cast(items[i]));
items[i] = null;
i = inc(i);
++n;
}
if (n > 0) {
count -= n;
takeIndex = i;
notFull.signalAll();
}
return n;
} finally {
lock.unlock();
}
}

代码逻辑很简单,看看注释就明了其原理了。所有涉及到对items数组操作的方法,都加上了全局锁,所以ArrayBlockingQueue是线程安全的。

ps. 注释里写的非阻塞,是指不会被两个Condition所阻塞,这些方法如果被多线程并发调用,涉及到对lock的争用,那肯定是会在lock上阻塞住的。

4. ArrayBlockingQueue的迭代器

ArrayBlockingQueue的迭代器是弱一致的,它不会抛出ConcurrentModificationException。

设计思路很奇怪,创建迭代器的瞬间,记下了ArrayBlockingQueue的size,与takeIndex的位置(也就是确定了对底层数组的遍历区间),还会缓存住调用next方法即将返回的元素。

然后在调用next方法时,如果对应的元素已经被删除,返回之前缓存的元素(弱一致性),然后向后遍历,跳过null,直到找到下一个非空元素或者把size个元素都遍历完为止。

相关源码如下:

    /**
* Iterator for ArrayBlockingQueue. To maintain weak consistency
* with respect to puts and takes, we (1) read ahead one slot, so
* as to not report hasNext true but then not have an element to
* return -- however we later recheck this slot to use the most
* current value; (2) ensure that each array slot is traversed at
* most once (by tracking "remaining" elements); (3) skip over
* null slots, which can occur if takes race ahead of iterators.
* However, for circular array-based queues, we cannot rely on any
* well established definition of what it means to be weakly
* consistent with respect to interior removes since these may
* require slot overwrites in the process of sliding elements to
* cover gaps. So we settle for resiliency, operating on
* established apparent nexts, which may miss some elements that
* have moved between calls to next.
*/
private class Itr implements Iterator<E> {
private int remaining; // Number of elements yet to be returned
private int nextIndex; // Index of element to be returned by next
private E nextItem; // Element to be returned by next call to next
private E lastItem; // Element returned by last call to next
private int lastRet; // Index of last element returned, or -1 if none Itr() {
final ReentrantLock lock = ArrayBlockingQueue.this.lock;
lock.lock();
try {
lastRet = -1;
if ((remaining = count) > 0)
nextItem = itemAt(nextIndex = takeIndex);
} finally {
lock.unlock();
}
} public boolean hasNext() {
return remaining > 0;
} public E next() {
final ReentrantLock lock = ArrayBlockingQueue.this.lock;
lock.lock();
try {
if (remaining <= 0)
throw new NoSuchElementException();
lastRet = nextIndex;
E x = itemAt(nextIndex); // check for fresher value
if (x == null) {
x = nextItem; // we are forced to report old value
lastItem = null; // but ensure remove fails
}
else
lastItem = x;
while (--remaining > 0 && // skip over nulls
(nextItem = itemAt(nextIndex = inc(nextIndex))) == null)
;
return x;
} finally {
lock.unlock();
}
} public void remove() {
final ReentrantLock lock = ArrayBlockingQueue.this.lock;
lock.lock();
try {
int i = lastRet;
if (i == -1)
throw new IllegalStateException();
lastRet = -1;
E x = lastItem;
lastItem = null;
// only remove if item still at index
if (x != null && x == items[i]) {
boolean removingHead = (i == takeIndex);
removeAt(i);
if (!removingHead)
nextIndex = dec(nextIndex);
}
} finally {
lock.unlock();
}
}
}

J.U.C并发框架源码阅读(八)ArrayBlockingQueue的更多相关文章

  1. J.U.C并发框架源码阅读(二)AbstractQueuedSynchronizer

    基于版本jdk1.7.0_80 java.util.concurrent.locks.AbstractQueuedSynchronizer 代码如下 /* * ORACLE PROPRIETARY/C ...

  2. J.U.C并发框架源码阅读(六)ConditionObject

    基于版本jdk1.7.0_80 java.util.concurrent.locks.AbstractQueuedSynchronizer.ConditionObject 代码如下 /** * Con ...

  3. J.U.C并发框架源码阅读(五)Semaphore

    基于版本jdk1.7.0_80 java.util.concurrent.Semaphore 代码如下 /* * ORACLE PROPRIETARY/CONFIDENTIAL. Use is sub ...

  4. J.U.C并发框架源码阅读(十三)ThreadPoolExecutor

    基于版本jdk1.7.0_80 java.util.concurrent.ThreadPoolExecutor 代码如下 /* * ORACLE PROPRIETARY/CONFIDENTIAL. U ...

  5. J.U.C并发框架源码阅读(十五)CopyOnWriteArrayList

    基于版本jdk1.7.0_80 java.util.concurrent.CopyOnWriteArrayList 代码如下 /* * Copyright (c) 2003, 2011, Oracle ...

  6. J.U.C并发框架源码阅读(三)ReentrantLock

    基于版本jdk1.7.0_80 java.util.concurrent.locks.ReentrantLock 代码如下 /* * ORACLE PROPRIETARY/CONFIDENTIAL. ...

  7. J.U.C并发框架源码阅读(十二)ConcurrentHashMap

    基于版本jdk1.7.0_80 java.util.concurrent.ConcurrentHashMap 代码如下 /* * ORACLE PROPRIETARY/CONFIDENTIAL. Us ...

  8. J.U.C并发框架源码阅读(一)AtomicInteger

    基于版本jdk1.7.0_80 java.util.concurrent.atomic.AtomicInteger 代码如下 /* * ORACLE PROPRIETARY/CONFIDENTIAL. ...

  9. J.U.C并发框架源码阅读(七)CyclicBarrier

    基于版本jdk1.7.0_80 java.util.concurrent.CyclicBarrier 代码如下 /* * ORACLE PROPRIETARY/CONFIDENTIAL. Use is ...

随机推荐

  1. 独立开发unity2d游戏的问答群

    129443731 有志独立开发游戏的,只讨论最新的unity2d技术的.群里面主要已问答为主,喜欢聊天的就别加群了,灌水多了会被t.希望能对unity2d比较了解的已及喜欢学习的人加入.

  2. 《Cracking the Coding Interview》——第7章:数学和概率论——题目5

    2014-03-20 02:20 题目:给定二维平面上两个正方形,用一条直线将俩方块划分成面积相等的两部分. 解法:穿过对称中心的线会将面积等分,所以连接两个中心即可.如果两个中心恰好重合,那么任意穿 ...

  3. 孤荷凌寒自学python第六十天在windows10上搭建本地Mongodb数据服务

     孤荷凌寒自学python第六十天在windows10上找搭建本地Mongodb数据服务 (完整学习过程屏幕记录视频地址在文末) 今天是学习mongoDB数据库的第六天.成功在本地搭建了windows ...

  4. shell之进程

    ps     System V 风格  -         -elF         -ef         -eF     BSD            a所有跟终端有关的进程           ...

  5. ZOJ 3724 Delivery 树状数组好题

    虽然看起来是求最短路,但因为条件的限制,可以转化为区间求最小值. 对于一条small path [a, b],假设它的长度是len,它对区间[a, b]的影响就是:len-( sum[b]-sum[a ...

  6. hdu 1574 RP问题 01背包的变形

    hdu 1574 RP问题 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1574 分析:01背包的变形. RP可能为负,所以这里分两种情况处理一下就好 ...

  7. 第二阶段团队冲刺-three

    昨天: 修复博客作业查询功能. 今天: 绘制logo. 遇到的问题: 无.

  8. 201621123033 《Java程序设计》第6周学习总结

    第六次作业 1. 本周学习总结 1.1 面向对象学习暂告一段落,请使用思维导图,以封装.继承.多态为核心概念画一张思维导图或相关笔记,对面向对象思想进行一个总结. 2. 书面作业 1. clone方法 ...

  9. 记一下STL的一个题

    A. Diversity time limit per test 1 second memory limit per test 256 megabytes input standard input o ...

  10. 【bzoj5056】OI游戏 最短路+矩阵树定理

    题目描述 给出一张无向图,求满足 0号点到所有点的路径长等于原图中它们之间最短路 的生成树的个数. 输入 第一行一个整数N,代表原图结点. 接下来N行,每行N个字符,描绘了一个邻接矩阵.邻接矩阵中, ...