四边形的问题可以转化为三角形处理
穷举对角线,然后处理上下两个三角形,旋转卡壳

 var x,y:array[..] of double;
q:array[..] of longint;
l,r,i,j,k,t,n:longint;
ans:double; function max(a,b:double):double;
begin
if a>b then exit(a) else exit(b);
end; function cross(i,j,k,r:longint):double;
begin
exit((x[i]-x[j])*(y[k]-y[r])-(x[k]-x[r])*(y[i]-y[j]));
end; procedure swap(var a,b:double);
var c:double;
begin
c:=a;
a:=b;
b:=c;
end; procedure sort(l,r: longint);
var i,j: longint;
p,q:double; begin
i:=l;
j:=r;
p:=x[(l+r) shr ];
q:=y[(l+r) shr ];
repeat
while (x[i]<p) or (x[i]=p) and (y[i]<q) do inc(i);
while (p<x[j]) or (p=x[j]) and (q<y[j]) do dec(j);
if not(i>j) then
begin
swap(x[i],x[j]);
swap(y[i],y[j]);
inc(i);
j:=j-;
end;
until i>j;
if l<j then sort(l,j);
if i<r then sort(i,r);
end; begin
readln(n);
for i:= to n do
readln(x[i],y[i]);
sort(,n);
q[]:=;
t:=;
for i:= to n do
begin
while (t>) and (cross(q[t],q[t-],i,q[t-])<=) do dec(t);
inc(t);
q[t]:=i;
end;
k:=t;
for i:=n- downto do
begin
while (t>k) and (cross(q[t],q[t-],i,q[t-])<=) do dec(t);
inc(t);
q[t]:=i;
end;
for i:= to t- do
q[i+t-]:=q[i];
for i:= to t- do
begin
l:=i+;
r:=i+;
while (r<i+t-) and (cross(q[i+],q[i],q[r],q[i])<cross(q[i+],q[i],q[r+],q[i])) do inc(r);
ans:=max(ans,cross(q[i+],q[i],q[i+],q[i])+cross(q[i+],q[i],q[r],q[i]));
for j:=i+ to i+t- do
begin
while (l<j-) and (cross(q[l+],q[i],q[j],q[i])>cross(q[l],q[i],q[j],q[i])) do inc(l);
while (r<i+t-) and (cross(q[j],q[i],q[r+],q[i])>cross(q[j],q[i],q[r],q[i])) do inc(r);
ans:=max(ans,cross(q[l],q[i],q[j],q[i])+cross(q[j],q[i],q[r],q[i]));
end;
end;
ans:=ans/;
writeln(ans::);
end.

bzoj1069的更多相关文章

  1. BZOJ1069 SCOI2007最大土地面积(凸包+旋转卡壳)

    求出凸包,显然四个点在凸包上.考虑枚举某点,再移动另一点作为对角线,容易发现剩下两点的最优位置是单调的.过程类似旋转卡壳. #include<iostream> #include<c ...

  2. BZOJ1069 [SCOI2007]最大土地面积 【凸包 + 旋转卡壳】

    题目链接 BZOJ1069 题解 首先四个点一定在凸包上 我们枚举对角线,剩下两个点分别是两侧最远的点 可以三分,复杂度\(O(n^2logn)\) 可以借鉴旋转卡壳的思想,那两个点随着对角线的一定单 ...

  3. [POJ2187][BZOJ1069]旋转卡壳

    旋转卡壳 到现在依然不确定要怎么读... 以最远点对问题为例,枚举凸包上的两个点是最简单的想法,时间复杂度O(n2) 我们想象用两条平行线卡着这个凸包,当其中一个向某个方向旋转的时候另一个显然也是朝同 ...

  4. [BZOJ1069][SCOI2007]最大土地面积(水平扫描法求凸包+旋转卡壳)

    题意:在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成. 的多边形面积最大.n<=2000. 先求凸包,再枚举对角线,随着对角线的斜率上升,另外两 ...

  5. 【BZOJ-1069】最大土地面积 计算几何 + 凸包 + 旋转卡壳

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 2707  Solved: 1053[Submit][Sta ...

  6. bzoj1069 SCOI2007 最大土地面积

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 2560  Solved: 983 Description ...

  7. bzoj1069 [SCOI2007]最大土地面积 旋转卡壳

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 3767  Solved: 1501[Submit][Sta ...

  8. 凸包(BZOJ1069)

    顶点一定在凸包上,我们枚举对角线,观察到固定一个点后,随着另一个点的增加,剩下两个点的最优位置一定是单调的,于是就得到了一个优秀的O(n^2)做法. #include <cstdio> # ...

  9. BZOJ1069 SCOI2007 最大土地面积 凸包、旋转卡壳

    传送门 在这里假设可以选择两个相同的点吧-- 那么选出来的四个点一定会在凸包上 建立凸包,然后枚举这个四边形的对角线.策略是先枚举对角线上的一个点,然后沿着凸包枚举另一个点.在枚举另一个点的过程中可以 ...

随机推荐

  1. 09_控制线程_线程睡眠sleep

    [线程睡眠] 如果需要让当前正在执行的线程暂停一段时间,并进入阻塞状态,则可以通过调用Thread类的静态方法sleep()方法来实现. sleep()方法有两种重载形式: 1.static void ...

  2. InstallShield Clone dialog

    Browse to Dialogs view, right-click an existing dialog, click Clone and rename the cloned dialog. Wh ...

  3. STL简介

    由于不同书籍和翻译问题对STL中的术语可能有差别本文采用侯杰<STL源码剖析>中的术语 STL的组件 包含6个组件,分别为容器.算法.迭代器.仿函数(函数对象).配接器(适配器).配置器( ...

  4. remastersys修改默认选项

    1.vim /etc/remastersys/isolinux/isolinux.cfg.vesamenu default vesamenu.c32prompt 0timeout 100 menu t ...

  5. svn 项目转移

    http://www.cnblogs.com/techMichaelLee/p/3193197.html (参考) svnadmin dump /home/svn/project > /home ...

  6. free -m

    free -m total used free shared buffers cached Mem: 7760 1572   6187          0              9       ...

  7. 一套帮助你理解C语言的测试题(转)

    前言 原文链接:http://www.nowamagic.net/librarys/veda/detail/775 内容 在这个网站(http://stevenkobes.com/ctest.html ...

  8. PHP权限分配思路

    常见四种方式1.用户+组+角色+权限2.用户+组+权限3.用户+角色+权限(最多用)4.用户+权限以第三种为例:权限:用户操作的具体事件:如curd角色:指一类用户拥有的权限,如超级管理员,管理员,普 ...

  9. 布局时margin会影响父元素

    布局时margin会影响父元素.md 在布局使用margin时 <div class="login-bg"> <div class="login&quo ...

  10. jQuery实现鼠标移到元素上动态提示消息框效果

    当光标移动到某些元素上时,会弹出像tips的提示框,这种效果想必大家都有见到过吧,下面有个不错的示例,大家可以感受下 当光标移动到某些元素上时,会弹出像tips的提示框. 复制代码代码如下: < ...