BZOJ3530: [Sdoi2014]数数
3530: [Sdoi2014]数数
Time Limit: 10 Sec Memory Limit: 512 MB
Submit: 322 Solved: 188
[Submit][Status]
Description
我们称一个正整数N是幸运数,当且仅当它的十进制表示中不包含数字串集合S中任意一个元素作为其子串。例如当S=(22,333,0233)时,233是幸运数,2333、20233、3223不是幸运数。
给定N和S,计算不大于N的幸运数个数。
Input
输入的第一行包含整数N。
接下来一行一个整数M,表示S中元素的数量。
接下来M行,每行一个数字串,表示S中的一个元素。
Output
输出一行一个整数,表示答案模109+7的值。
Sample Input
3
2
3
14
Sample Output
HINT
下表中l表示N的长度,L表示S中所有串长度之和。
1 < =l < =1200 , 1 < =M < =100 ,1 < =L < =1500
题解:
orz居然自己做出来了。。。
定义f[i][j][k]表示到第i位,走到自动机上的j节点,k=0/1表示前面的数字是否都与N相同,也就是前面都是“贴”着过来的。
那么就很好转移了。这是数字满n位的情况。注意需要手动跑出第一位。
然后不满n位的就没有什么限制了,直接枚举每一位走就可以了。
代码:
#include<cstdio> #include<cstdlib> #include<cmath> #include<cstring> #include<algorithm> #include<iostream> #include<vector> #include<map> #include<set> #include<queue> #include<string> #define inf 1000000000 #define maxn 2000+5 #define maxm 20000000+5 #define eps 1e-10 #define ll long long #define pa pair<int,int> #define for0(i,n) for(int i=0;i<=(n);i++) #define for1(i,n) for(int i=1;i<=(n);i++) #define for2(i,x,y) for(int i=(x);i<=(y);i++) #define for3(i,x,y) for(int i=(x);i>=(y);i--) #define mod 1000000007 using namespace std; inline int read() { int x=,f=;char ch=getchar(); while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();} while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();} return x*f; }
int n,m,cnt,a[maxn],go[maxn],t[maxn][],f[maxn][maxn][];
char s[maxn];
bool v[maxn];
queue<int>q;
inline void add()
{
scanf("%s",s+);int len=strlen(s+),now=;
for1(i,len)
{
int x=s[i]-'';
if(!t[now][x])t[now][x]=++cnt;
now=t[now][x];
}
v[now]=;
}
void bfs()
{
q.push();
while(!q.empty())
{
int x=q.front(),y,j;v[x]|=v[go[x]];q.pop();
for0(i,)
{
j=go[x];
while(j&&!t[j][i])j=go[j];
if(t[x][i])
{
go[y=t[x][i]]=j?t[j][i]:;
q.push(y);
}else t[x][i]=j?t[j][i]:;
}
}
} int main() { freopen("input.txt","r",stdin); freopen("output.txt","w",stdout);
scanf("%s",s+);n=strlen(s+);
for1(i,n)a[i]=s[i]-''; m=read();cnt=;
for0(i,)t[][i]=++cnt;
while(m--)add();
bfs();
for1(i,a[])if(!v[t[][i]])f[][t[][i]][i==a[]]=;
for1(i,n-)
for1(j,cnt)
{
for0(k,a[i+])if(!v[t[j][k]])(f[i+][t[j][k]][k==a[i+]]+=f[i][j][])%=mod;
for0(k,)if(!v[t[j][k]])(f[i+][t[j][k]][]+=f[i][j][])%=mod;
}
int ans=;
for1(i,cnt)(ans+=f[n][i][])%=mod,(ans+=f[n][i][])%=mod;
memset(f,,sizeof(f));
for1(i,)if(!v[t[][i]])f[][t[][i]][]=;
for1(i,n-)
for1(j,cnt)
for0(k,)
if(!v[t[j][k]])(f[i+][t[j][k]][]+=f[i][j][])%=mod;
for1(i,n-)
for1(j,cnt)
(ans+=f[i][j][])%=mod;
printf("%d\n",ans); return ; }
BZOJ3530: [Sdoi2014]数数的更多相关文章
- [bzoj3530][Sdoi2014]数数_AC自动机_数位dp
数数 bzoj-3530 Sdoi-2014 题目大意:给你一个整数集合,求所有不超过n的正整数,是的它的十进制表示下不能再一段等于集合中的任意数. 注释:$1\le n \le 1200$,$1\l ...
- 【BZOJ】【3530】【SDOI2014】数数
AC自动机/数位DP orz zyf 好题啊= =同时加深了我对AC自动机(这个应该可以叫Trie图了吧……出边补全!)和数位DP的理解……不过不能自己写出来还真是弱…… /************* ...
- 【HDU3530】 [Sdoi2014]数数 (AC自动机+数位DP)
3530: [Sdoi2014]数数 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 682 Solved: 364 Description 我们称一 ...
- BZOJ 3530: [Sdoi2014]数数 [AC自动机 数位DP]
3530: [Sdoi2014]数数 题意:\(\le N\)的不含模式串的数字有多少个,\(n=|N| \le 1200\) 考虑数位DP 对于长度\(\le n\)的,普通套路DP\(g[i][j ...
- 【BZOJ3530】数数(AC自动机,动态规划)
[BZOJ3530]数数(AC自动机,动态规划) 题面 BZOJ 题解 很套路的\(AC\)自动机+\(DP\) 首先,如果长度小于\(N\) 就不存在任何限制 直接大力\(DP\) 然后强制限制不能 ...
- 「SDOI2014」数数 解题报告
「SDOI2014」数数 题目描述 我们称一个正整数 \(N\) 是幸运数,当且仅当它的十进制表示中不包含数字串集合 \(S\) 中任意一个元素作为其子串. 例如当 \(S=(\)22, 333, 0 ...
- 3530: [Sdoi2014]数数
3530: [Sdoi2014]数数 链接 分析: 对给定的串建立AC自动机,然后数位dp.数位dp的过程中,记录当前在AC自动机的哪个点上,保证不能走到出现了给定串的点. 代码: #include& ...
- [SDOI2014]数数 --- AC自动机 + 数位DP
[SDOI2014]数数 题目描述: 我们称一个正整数N是幸运数,当且仅当它的十进制表示中不包含数字串集合S中任意一个元素作为其子串. 例如当S=(22,333,0233)时,233是幸运数,2333 ...
- bzoj [Sdoi2014]数数 AC自动机上dp
[Sdoi2014]数数 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1264 Solved: 636[Submit][Status][Discu ...
随机推荐
- Spring框架中的单例Beans是线程安全的么?
Spring框架并没有对单例bean进行任何多线程的封装处理.关于单例bean的线程安全和并发问题需要开发者自行去搞定.但实际上,大部分的Spring bean并没有可变的状态(比如Serview类和 ...
- C++中使用多线程
使用的函数是CreateThread和CloseHandle相互配合. 举个简单的例子: 申明类变量 HANDLE hThread; DWORD ThreadID; 在需要创建线程的地方使用: hTh ...
- java.util.Hashtable源码分析
Hashtable实现一个键值映射的表.任何非null的object可以用作key和value. 为了能存取对象,放在表里的对象必须实现hashCode和equals方法. 一个Hashtable有两 ...
- easyui 初体验
简介 jQuery EasyUI是一组基于jQuery的UI插件集合体,而jQuery EasyUI的目标就是帮助web开发者更轻松的打造出功能丰富并且美观的UI界面.开发者不需要编写复杂的javas ...
- WPF MVVM 中怎样在ViewModel总打开的对话框在窗体之前
今天在WPF的项目中,写打印插件,在ViewModel中对需要弹出打印对话框,而对话框如果没有Owner所属的时候经常会被当前应用程序遮住,导致我都不知道到底弹出来没有! 参照:http://www. ...
- appcan 跨窗口处理方法 appcan.window.evaluateScript({name,scriptContent,type})使用解读
appcan.window.evaluateScript({ name,/*主窗口名称,此窗口要先用appcan.window.open打开了,才能找到,此方法才会有效*/ scriptContent ...
- 关于aspx模板页面元素路径的问题,以及对模板页面的理解
模板页面仅是模板,它不是单独存在的页面,它的路径就是引用它的内容页面的路径. 换句话说,模板页面,只是内容页面上固定的部分. 模板页面引用了的js和CSS,内容页面就不用重新引用了 css ...
- AVAudioRecorder 录制音频
AVFoundation 中使用AVAudioRecorder 类添加音频录制功能是非常简单的, AVAudioRecorder构建与Audio Queue Services之上是一个功能强大且代码简 ...
- 关于解决JQuery发送Ajax请求后,IE缓存数据不更新的问题
http://www.cnblogs.com/lys_013/archive/2013/08/07/3243435.html 今天在做ajax页面无刷新请求后台服务器数据的时候,IE下遭遇Ajax缓存 ...
- win7环境下配置Java环境
==下载Java SE Development Kit 8u45== http://www.oracle.com/technetwork/java/javase/downloads/jdk8-down ...