Python中利用函数装饰器实现备忘功能

这篇文章主要介绍了Python中利用函数装饰器实现备忘功能,同时还降到了利用装饰器来检查函数的递归、确保参数传递的正确,需要的朋友可以参考下
 

“备忘”的定义

“memoization”(备忘)这个词是由Donald Michie在1968年提出的,它基于拉丁语单词“memorandum”(备忘录),意思是“被记住”。虽然它和单词“memorization”在某种程度上有些相似,但它并不是该单词的错误拼写。实际上,Memoisation是一种用于通过计算来加速程序的技术,它通过记住输入量的计算结果,例如函数调用结果,来实现其加速目的。如果遇到相同的输入或者具有相同参数的函数调用,那么之前存储的结果就可以被再次使用,从而避免一些不必要的计算。在很多情况下,可以使用一个简单的数组来存储结果,但也可以使用许多其他的数据结构,例如关联数组,它在Perl语言中叫做哈希,在Python语言中称为字典。

备忘功能可以由程序员显式地编程实现,但是一些编程语言如Python,都提供了自动备忘函数的机制。
利用函数装饰器实现备忘功能

在前面关于递归函数的那章中,我们分别使用迭代和递归实现了斐波纳契数列的求解。我们已经证明,如果直接利用斐波纳契数列的数学定义,在一个递归函数中实现数列的求解,正如下面的函数一样,那么它将具有指数级的时间复杂度:

1
2
3
4
5
6
7
def fib(n):
  if n == 0:
    return 0
  elif n == 1:
    return 1
  else:
    return fib(n-1) + fib(n-2)

此外,我们还提出了一种提高递归实现的时间复杂度的方法,即通过添加一个字典来记住之前函数的计算结果。这是一个显式地使用备忘技术的例子,只是当时我们并没有这么称呼它。这种方法的缺点是,原始递归实现的明晰性和优雅性丢失了。

造成以上缺点的原因是,我们改变了递归函数fib的代码。不过下面的代码不会改变我们的fib函数,所以它的明晰性和易读性并没有丢失。为了实现该目的,我们使用自定义的函数memoize()。函数memoize()以函数作为参数,并使用一个字典“memo”来存储函数的结果。虽然变量“memo”和函数“f”仅仅具有局部备忘功能,但是它们通过函数“helper”被一个闭包捕获,而memoize()将函数“helper”作为引用返回。所以,对memoize(fib)的调用将会返回一个helper()的引用,而在helper()中实现了fib()函数的功能以及一个用于保存还未存储的结果到字典“memo”中的包装器,并防止重新计算“memo”中已有的结果。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
def memoize(f):
  memo = {}
  def helper(x):
    if x not in memo:     
      memo[x] = f(x)
    return memo[x]
  return helper
  
def fib(n):
  if n == 0:
    return 0
  elif n == 1:
    return 1
  else:
    return fib(n-1) + fib(n-2)
  
fib = memoize(fib)
  
print(fib(40))

现在让我们了解下所谓的装饰器,首先看一下上面代码中将备忘功能指派到fib函数的这一行:

1
fib = memoize(fib)

一种说法是,函数memoize()装饰了函数fib。
将Memoize封装成类

我们还可以将结果的缓存封装到一个类中,如下面的例子所示:

1
2
3
4
5
6
7
8
class Memoize:
 def __init__(self, fn):
   self.fn = fn
   self.memo = {}
 def __call__(self, *args):
   if args not in self.memo:
 self.memo[args] = self.fn(*args)
   return self.memo[args]

因为我们使用了字典,所以不能使用可变参数,即参数必须是不可变的。
Python中的装饰器

Python中的装饰器是一个可调用的Python对象,用于修改一个函数、方法或者类的定义。原始的对象,也就是即将被改变的那个对象,作为参数传递给一个装饰器,而装饰器则返回一个修改过的对象,例如一个修改过的函数,它会被绑定到定义中使用的名字上。Python中的装饰器与Java中的注解有一个相似的语法,即Python中的装饰器语法可以看作是纯粹的语法糖,使用“@”作为关键字。
示例:使用装饰器实现备忘功能

其实,前面我们已经使用了装饰器,只是没有这么称呼它而已。实际上,本章开头例子中的memoize函数就是一个装饰器,我们使用它来记住fib函数的结果,只是我们没有使用Python中装饰器特殊的语法而已,即艾特字符“@”。

相比于写成下面的形式

1
fib = memoize(fib)

我们可以这样写

1
@memoize

但这一行必须直接写在被装饰的函数之前,在我们的例子fib()中,如下所示:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
def memoize(f):
  memo = {}
  def helper(x):
    if x not in memo:     
      memo[x] = f(x)
    return memo[x]
  return helper
  
@memoize
def fib(n):
  if n == 0:
    return 0
  elif n == 1:
    return 1
  else:
    return fib(n-1) + fib(n-2)
  
#fib = memoize(fib)
  
print(fib(40))

利用装饰器检查参数

在讲解递归函数的那章中我们介绍了阶乘函数,在那里我们希望保持函数尽可能简单,而不想掩盖基本理念,所以代码中没有包含任何参数检查代码。然而,如果别人以负数或者浮点数作为参数来调用我们的函数,那么函数将会陷入一个死循环。

下面的程序使用一个装饰器函数来确保传给函数“factorial”的参数是一个正整数:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
def argument_test_natural_number(f):
  def helper(x):
    if type(x) == int and x > 0:
      return f(x)
    else:
      raise Exception("Argument is not an integer")
  return helper
  
@argument_test_natural_number
def factorial(n):
  if n == 1:
    return 1
  else:
    return n * factorial(n-1)
  
for i in range(1,10):
  print(i, factorial(i))
  
print(factorial(-1))

练习

1、我们的练习是一个古老的谜题。1612年,法国耶稣会士Claude-Gaspar Bachet提出了该谜题,即使用一个天平称出从1磅到40磅的所有整数重量的东西(例如,糖或者面粉),求最少的砝码数量。

第一个方法可能是使用1、2、4、8、16和32磅重量的这些砝码。如果我们将砝码放在天平的一端,而将物品放在另一端,那么这种方法用到的砝码数量将是最小的。然而,我们也可以将砝码同时放在天平的两端,此时我们仅仅需要重量为1、3、9、27的砝码。

编写一个Python函数weigh(),该函数计算需要的砝码以及它们在天平盘中的分布,以此来称量1磅到40磅中任何一个整数重量的物品。
解决方法

1、我们需要前面章节“Linear Combinations”中的函数linear_combination()。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
def factors_set():
  factors_set = ( (i,j,k,l) for i in [-1,0,1]
             for j in [-1,0,1]
             for k in [-1,0,1]
             for l in [-1,0,1])
  for factor in factors_set:
    yield factor
  
def memoize(f):
  results = {}
  def helper(n):
    if n not in results:
      results[n] = f(n)
    return results[n]
  return helper
  
@memoize
def linear_combination(n):
  """ returns the tuple (i,j,k,l) satisfying
    n = i*1 + j*3 + k*9 + l*27   """
  weighs = (1,3,9,27)
  
  for factors in factors_set():
    sum = 0
    for i in range(len(factors)):
     sum += factors[i] * weighs[i]
    if sum == n:
     return factors

2、利用上面的代码,就能很容易写出我们的函数weigh()。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
def weigh(pounds):
  weights = (1,3,9,27)
  scalars = linear_combination(pounds)
  left = ""
  right = ""
  for i in range(len(scalars)):
    if scalars[i] == -1:
      left += str(weights[i]) + " "
  elif scalars[i] == 1:
      right += str(weights[i]) + " "
  return (left,right)
  
for i in [2,3,4,7,8,9,20,40]:
  pans = weigh(i)
  print("Left pan: " + str(i) + " plus " + pans[0])
  print("Right pan: " + pans[1] + "n")

Python中利用函数装饰器实现备忘功能的更多相关文章

  1. Python中的@函数装饰器到底是什么?

    在解释@函数装饰器之前,先说一下,类中的类方法和静态方法. 在Python中完全支持定义类方法.静态方法.这两种方法很相似,Python它们都使用类来调用(ps:用对象调用也可以). 区别在于:Pyt ...

  2. python 中多个装饰器的执行顺序

    python 中多个装饰器的执行顺序: def wrapper1(f1): print('in wrapper1') def inner1(*args,**kwargs): print('in inn ...

  3. 第7.26节 Python中的@property装饰器定义属性访问方法getter、setter、deleter 详解

    第7.26节 Python中的@property装饰器定义属性访问方法getter.setter.deleter 详解 一.    引言 Python中的装饰器在前面接触过,老猿还没有深入展开介绍装饰 ...

  4. python语言中的函数装饰器

    装饰器 什么是装饰器? 装饰:给已有的对象(函数)添加新的功能 器:工具              在python中指具备某些功能的函数 装饰器:装饰器就是一个给其他函数增加功能的函数 一种设计原则: ...

  5. Python作用域-->闭包函数-->装饰器

    1.作用域: 在python中,作用域分为两种:全局作用域和局部作用域. 全局作用域是定义在文件级别的变量,函数名.而局部作用域,则是定义函数内部. 关于作用域,我要理解两点:a.在全局不能访问到局部 ...

  6. python二 总结--函数-- 装饰器

    装饰器是什么? 有什么用? 为什么要用? 真的有用吗? 1.装饰器: 装饰器: 定义:本质是函数,(装饰其他函数)就是为其他函数添加附加功能. 原则:1.不能修改被装饰的函数的源代码          ...

  7. python中闭包和装饰器的理解(关于python中闭包和装饰器解释最好的文章)

    转载:http://python.jobbole.com/81683/ 呵呵!作为一名教python的老师,我发现学生们基本上一开始很难搞定python的装饰器,也许因为装饰器确实很难懂.搞定装饰器需 ...

  8. python语法基础-函数-装饰器-长期维护

    ######################################################### # 装饰器 # 装饰器非常重要,面试Python的公司必问, # 原则:开放封闭原则 ...

  9. python 修改的函数装饰器

    把好的代码记录下来 方便以后学习 修改的函数参数装饰器 from functools import wraps import time import logging def warn(timeout) ...

随机推荐

  1. Ubuntu You don't have permission to access解决方案!

    最近对Linux越来越喜欢了,就直接安装了一个Ubuntu,配制好LAMP后,在做小项目时,出现了下面的问题:Ubuntu You don't have permission to access ** ...

  2. WebApi Gzip(Deflate) 压缩请求数据

    由于不能直接访问指定数据库,只能通过跳板机查询Oracle数据,所以要做一个数据中转接口, 查询数据就要压缩,于是就找资料,代码如下,其中要注意的是Response.Headers.Remove(&q ...

  3. [Forward]Visual Guide: Setting up My Sites in SharePoint 2013

    from  http://blog.sharedove.com/adisjugo/index.php/2012/07/25/visual-guide-setting-up-my-sites-in-sh ...

  4. IE8一枝独秀的JS兼容BUG

    // 例如淡入淡出的封装类文件 function ImagesEff(div,time){ this.arr=[];//装载所有div this.time=time; this.recordOld=n ...

  5. Linux on Power 上的调试工具和技术

     Linux on Power 上的调试工具和技术 简介: 调试是一项主要的软件开发活动,作为应用程序开发人员,您无法避免对程序进行调试.有效的调试不仅能缩短软件开发周期,而且可以节省成本.本文简要介 ...

  6. hiho #1044 : 状态压缩·一

    描述 小Hi和小Ho在兑换到了喜欢的奖品之后,便继续起了他们的美国之行,思来想去,他们决定乘坐火车前往下一座城市——那座城市即将举行美食节! 但是不幸的是,小Hi和小Ho并没有能够买到很好的火车票—— ...

  7. 芭比娃娃 Barbara

    芭比娃娃(芭比)是20世纪最广为人知及最畅销的玩偶,由Ruth Handler发明,于1959年3月9日举办的美国国际玩具展览会(American International Toy Fair)上首次 ...

  8. 《Linear Algebra and Its Applications》-chaper3-行列式-行列式初等变换

    承接上一篇文章对行列式的引入,这篇文章将进一步记录关于行列式的有关内容,包括如下的几个方面: (1)行列式3个初等变换的证明. (2)转置行列式与原行列式相等的证明. (3)定理det(AB) = d ...

  9. OpenWrt简要刷机教程

    准备工作 1. 下载openwrt中文固件到PC.(当然其他英文固件也可) 2  找到路由器的RST键. 3  找到路由器刷机口---姑且称之为“WAN口” 4. 关闭路由器的电源. 5. 将PC网口 ...

  10. selenium grid 测试资料

    像风一样自由的4篇博客: http://blog.csdn.net/five3/article/details/9671287 http://blog.csdn.net/five3/article/d ...