[CODEVS2055]集合划分
对于从1到N(1<=N<=3)的连续整数集合,划分成两个子集合,使得每个集合的数字之和相等。举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,他们每个的所有数字和是相等的:{3} and {1,2} 这是唯一的一种分法(交换集合位置被认为是同一种划分方案,因此不会增加划分方案总数)。如果N=7,有四种方法能划分集合{1,2,3,4,5,6,7},每一种分法的子集合各数字和是相等的: {1,6,7} and {2,3,4,5};{2,5,7} and {1,3,4,6}; {3,4,7} and {1,2,5,6};{1,2,4,7} and {3,5,6}
var f:array[..,..] of longint;
n,s,i,j:longint;
begin
fillchar(f,sizeof(f),);
read(n);
s:=n*(n+) div ;
if (s mod =) then
begin
writeln();
halt;
end
//总和是奇数无法平分直接输出零
else
begin
f[n,]:=;
f[n,n]:=;
s:=s div ;
//也可以一开始div4
for i:=n- downto do
for j:= to s do
begin
f[i,j]:=f[i+,j];
if j-i>= then f[i,j]:=f[i,j]+f[i+,j-i];
//f[i,j]表示从i..n中取数得和为j的方案数,j-i意为取完数了
end;
writeln(f[,s]);
end;
end.
[CODEVS2055]集合划分的更多相关文章
- CODEVS 2055 集合划分
[题目描述] 对于从1到N(1<=N<=39)的连续整数集合,划分成两个子集合,使得每个集合的数字之和相等. 举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,他们每个的所有数字 ...
- 集合划分——cf1028D思维题
非常思维的一道题目,题意很长 给定s1,s2两个集合,s1维护最大值,s2维护最小值,s1的所有元素要比s2小 操作1:往两个集合里的任意一个添加x 操作2:把x从所在的集合里删掉:要求被删的x必须是 ...
- [P5748] 集合划分计数 - 生成函数,NTT
求 \(10^5\) 以内的所有贝尔数:将 \(n\) 个有标号的球划分为若干非空集合的方案数 Solution 非空集合的指数生成函数为 \(F(x)=e^x-1\) 枚举一共用多少个集合,答案就是 ...
- LuoguP5748 集合划分计数
题意 一个有\(n\)个元素的集合,将其分为任意个非空子集,求方案数.集合之间是无序的,\(\{\{1,2\},\{3\}\}=\{\{3\},\{1,2\}\}\). 设\(f_n\)表示用\(n\ ...
- Atcoder Grand Contest 038 F - Two Permutations(集合划分模型+最小割)
洛谷题面传送门 & Atcoder 题面传送门 好久前做的题了--今天偶然想起来要补个题解 首先考虑排列 \(A_i\) 要么等于 \(i\),要么等于 \(P_i\) 这个条件有什么用.我们 ...
- N个元素的集合划分成互斥的两个子集的数目
前面这是寒假听马士兵老师讲的时候积累的语录.......... 1.php是水果刀,java是菜刀,刀法比较多,一年的和三年的区别很大. 2.nanicat连接mysql出现10061是服务没开启,却 ...
- 集合划分状压dp
给一个 $n$ 个点 $m$ 条边的无向图,每条边有 $p_i$ 的概率消失,求图连通的概率 $n \leq 9$ sol: 我们考虑一个 $dp$ $f_{(i,S)}$ 表示只考虑前 $i$ 条边 ...
- BZOJ 2127: happiness(最小割解决集合划分)
Time Limit: 51 Sec Memory Limit: 259 MBSubmit: 2350 Solved: 1138[Submit][Status][Discuss] Descript ...
- c#集合解析
什么是集合(collection)? 提供了一种结构化组织任意对象的方式,从.NET 的角度看,所谓的集合可以定义为一种对象,这种对象实现一个或者多个System.Collections.IColle ...
随机推荐
- MVC的发展
ASP.NET下的MVC从原始的1.0走到2.0,再到3.0,现在走到4.0,也许明年5.0就问世了,先不管那些,那说说这些MVC在ASP.NET是如何变化发展的.对于.net编程人员来说可能会很熟悉 ...
- ubuntu 安装phpmyadmin
参考文章: http://www.111cn.net/database/mysql/43957.htm access错误的解决方法 1 首先下载 去官网下载phpmyadmin 2 然后直接 ...
- 【原创】Linux 增加系统调用
Linux 增加系统调用大致步骤: 1.下载好内核文件,在内核源文件中添加好自己的调用函数. 2.编译内核 3.验证. 一.在内核源文件中增加自己的函数 首先将内核文件移至/usr/src/下并解 ...
- Java Servlet 接收上传文件
在Java中使用 Servlet 来接收用户上传的文件,需要用到两个apache包,分别是 commons-fileupload 和 commons-io 包: 如果直接在doPost中,使用requ ...
- 网站开发常用jQuery插件总结(12)固定元素插件scrolltofixed
这个插件在前段时间用过一次,当时是改一个网站.要求顶部的菜单栏随着滚动条的滚动而固定.也大体写了一下,不过在文章中也只是提了一下,文章地址:jQuery插件固定元素位置. 在这篇文章中,再进行总结一下 ...
- [C#]Base使用小记
base 关键字用于从派生类中访问基类的成员: • 调用基类上已被其他方法重写的方法. • 指定创建派生类实例时应调用的基类构造函数. 基类访问只能在构造函数.实例方法或实例属性访问器中进行. 从静态 ...
- Python 命令行参数解析
方法1: Python有一个类可以专门处理命令行参数,先看代码: #!/usr/bin/env python # encoding: utf-8 from optparse import Option ...
- sql 判断一个表的数据不在另一个表中
SELECT a.* FROM a LEFT JOIN b ON a.key = b.key WHERE (b.key IS NULL) end as flag from a select id fr ...
- share my tools With Xcode
1.让Xcode的控制台支持LLDB类型的打印 在Xcode断点调试的时候, 在控制台输入 po self.view.frame 或者 po id 类型的时候就死翘翘了. 进入正题: 安装LLDB调试 ...
- [BZOJ 3530] [Sdoi2014] 数数 【AC自动机+DP】
题目链接:BZOJ - 3530 题目分析 明显是 AC自动机+DP,外加数位统计. WZY 神犇出的良心省选题,然而去年我太弱..比现在还要弱得多.. 其实现在做这道题,我自己也没想出完整解法.. ...