【题意】

给出三角形的三个边长,均是10^7以内的整数,问三角形的三个角的坐标是否能均是整数,输出其中任意一个解。

【题解】

一开始想的是枚举一条边的横坐标,然后通过勾股定理以及算角度求出其他点的坐标,再判断是否符合条件。

亲测TLE

直到知道了本源勾股数组的构造方法。。。

每个本源勾股数组(a,b,c)满足a*a+b*b=c*c,其中a为奇数,b为偶数。。

枚举s,t(1<=t<s,且它们是没有公因数的奇数)

a=st  b=(s*s-t*t)/2  c=(s*s+t*t)/2

因为最大数c=(s*s+t*t)/2  所以最多枚举到sqrt(2*c)即可。

假设三角形的三个点分别为p,q和r

我们先固定一个点为p(0,0),另外一个点q与它的距离是x,还有一个点r与它的距离是y。那么q的距离与r的距离一定是z

我们枚举勾股数组,如果勾股数组(a1,b1,c1)的c1,也就是最大的那个数,等于x,那么x的坐标为(a1,b1)【当然也可以是(a1,-b1),(-a1,b1),(-a1,-b1),均需要枚举,下同】

然后枚举c等于y的勾股数组,(a2,b2,c2),那么r点坐标为(a2,b2) 【可以事先把这些坐标预处理出来,放入vector中】

接下来判断两坐标是否相距为z即可。

注意通过这种方法求出来的勾股数组的a是奇数,也就是说它们的倍数 (i*a,i*b,i*c),i是一个正整数,并不会被求出来,我们要求的是i*c==x,那么只要满足x mod c=0我们就可以把勾股数组乘以x/c,加入备选选项中。

注意(0,x) (0,-x) (x,0) (-x,0)以及(0,y) (0,-y) (y,0) (-y,0) 不会在枚举本源勾股数组中出现,所以需要自己手动判断。

#include<bits/stdc++.h>
#define eps 1e-9
#define FOR(i,j,k) for(int i=j;i<=k;i++)
#define MAXN 1005
#define MAXM 40005
#define INF 0x3fffffff
#define PB push_back
#define MP make_pair
#define X first
#define Y second
#define lc (k<<1)
#define rc ((k<<1)1)
using namespace std;
typedef long long LL;
LL i,j,k,n,m,x,y,T,ans,big,cas,num,len;
bool flag;
LL z;
LL mx,sum,a,b,c;
vector <pair<LL,LL> > xx,yy; LL gcd(LL x, LL y)
{
return y ? gcd(y, x % y) : x;
} int main()
{
scanf("%I64d%I64d%I64d",&x,&y,&z);
if (x>y) swap(x,y);
if (y>z) swap(y,z);
if (x>y) swap(x,y);
mx=(LL)(sqrt(*z)+eps); for (i=;i<=mx;i+=)//枚举本源勾股数组
{
for (j=i+;j<=mx;j+=)
{
if (gcd(i,j)>) continue;
a=i*j;
b=(j*j-i*i)/;
c=(j*j+i*i)/;
if (x%c==)
{
xx.PB(MP(a*x/c,b*x/c));
xx.PB(MP(a*x/c,-b*x/c));
xx.PB(MP(-a*x/c,b*x/c));
xx.PB(MP(-a*x/c,-b*x/c));
xx.PB(MP(b*x/c,a*x/c));
xx.PB(MP(b*x/c,-a*x/c));
xx.PB(MP(-b*x/c,a*x/c));
xx.PB(MP(-b*x/c,-a*x/c));
}
if (y%c==)
{
yy.PB(MP(a*y/c,b*y/c));
yy.PB(MP(a*y/c,-b*y/c));
yy.PB(MP(-a*y/c,b*y/c));
yy.PB(MP(-a*y/c,-b*y/c));
yy.PB(MP(b*y/c,a*y/c));
yy.PB(MP(b*y/c,-a*y/c));
yy.PB(MP(-b*y/c,a*y/c));
yy.PB(MP(-b*y/c,-a*y/c));
}
}
}
xx.PB(MP(,x));xx.PB(MP(x,));xx.PB(MP(,-x));xx.PB(MP(-x,));
yy.PB(MP(,y));yy.PB(MP(y,));yy.PB(MP(,-y));yy.PB(MP(-y,)); for (i=;i<xx.size();i++)
{
for (j=;j<yy.size();j++)
{
if ((xx[i].X-yy[j].X)*(xx[i].X-yy[j].X)+(xx[i].Y-yy[j].Y)*(xx[i].Y-yy[j].Y)==z*z)
{
printf("0 0\n%I64d %I64d\n%I64d %I64d\n",xx[i].X,xx[i].Y,yy[j].X,yy[j].Y);
return ;
}
}
}
printf("-1\n");
return ;
}

URAL 2032 - Conspiracy Theory and Rebranding【本源勾股数组】的更多相关文章

  1. ural 2032 Conspiracy Theory and Rebranding (数学水题)

    ural 2032  Conspiracy Theory and Rebranding 链接:http://acm.timus.ru/problem.aspx?space=1&num=2032 ...

  2. 勾股数组及其应用uva106

    勾股数组 设三元组(a,b,c)满足a^2 + b^2 = c^2的勾股数组,那么是否存在无穷多个勾股数组呢, 答案是肯定的,将三元组乘以d,可以得到新的三元组(da,db,dc) 即(da)^2 + ...

  3. Fermat vs. Pythagoras POJ - 1305 (数论之勾股数组(毕达哥拉斯三元组))

    题意:(a, b, c)为a2+b2=c2的一个解,那么求gcd(a, b, c)=1的组数,并且a<b<c<=n,和不为解中所含数字的个数,比如在n等于10时,为1, 2, 7,9 ...

  4. 毕达哥拉斯三元组(勾股数组)poj1305

    本原毕达哥拉斯三元组是由三个正整数x,y,z组成,且gcd(x,y,z)=1,x*x+y*y=z*z 对于所有的本原毕达哥拉斯三元组(a,b,c) (a*a+b*b=c*c,a与b必定奇偶互异,且c为 ...

  5. bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2027  Solved: 853[Submit][Stat ...

  6. hdu 3939(勾股+容斥)

    题意: 给定一个整数L(L<=1e12),计算(x,y,z)组的个数.其中x<y<z,x^2+y^2=z^2,gcd(x,y)==1,gcd(x,z)==1,gcd(y,z)==1. ...

  7. UVa 106 - Fermat vs Pythagoras(数论题目)

    题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...

  8. 【bzoj1041】圆上的整点

    题意 给定一个圆\(x^2+y^2=z^2\),求圆周上有多少个点的坐标是整数. \(r\leq 2*10^9\) 分析 这道题目关键要知道一些勾股数的性质,剩下的就很好处理了. 勾股数的性质 参考: ...

  9. ACM 数论小结 2014-08-27 20:36 43人阅读 评论(0) 收藏

    断断续续的学习数论已经有一段时间了,学得也很杂,现在进行一些简单的回顾和总结. 学过的东西不能忘啊... 1.本原勾股数: 概念:一个三元组(a,b,c),其中a,b,c没有公因数而且满足:a^2+b ...

随机推荐

  1. 大话设计模式之策略模式(strategy)

    策略模式:它定义了算法家族,分别封装起来,让他们之间可以互相替换,此模式让算法的变化不会影响使用算法的用户. 针对商城收银模式,打折,返现促销等的例子: 打折还是促销其实都是一些算法,可以用工厂模式来 ...

  2. 【技术贴】SqlServer2008 R2 安装失败提示出现以下错误 服务 MSSQLSERVERO

    Feature: Analysis Services  Status: 失败: 请查看日志了解详细信息  MSI status: 已通过  Configuration status: 失败: 请查看下 ...

  3. C语言嵌入式系统编程修炼之三:内存操作

    数据指针 在嵌入式系统的编程中,常常要求在特定的内存单元读写内容,汇编有对应的MOV指令,而除C/C++以外的其它编程语言基本没有直接访问绝对地址的能力.在嵌入式系统的实际调试中,多借助C语言指针所具 ...

  4. request.getParameter() 、 request.getInputStream()和request.getReader() 使用体会

    request.getParameter(). request.getInputStream().request.getReader()这三种方法是有冲突的,因为流只能被读一次.比如:当form表单内 ...

  5. LeetCode解题报告:Reorder List

    Reorder List Given a singly linked list L: L0→L1→…→Ln-1→Ln,reorder it to: L0→Ln→L1→Ln-1→L2→Ln-2→… Yo ...

  6. [cocos2d] 谁摸了我一下----触摸事件处理

    1. 设置接受触摸事件,可在init方法里面写上 [self setTouchEnabled: YES]; 旧版为self.isTouchEnabled = YES; xcode会报Deprecati ...

  7. Bluetooth LE(低功耗蓝牙) - 第三部分

    回顾 在本系列的前两篇文章中,我们已经了解了一些关于Bluetooth LE的背景并建立一个简单的Activity / Service框架.   在这篇文章中,我们将探讨Bluetooth LE的细节 ...

  8. 【POJ】2528 Mayor's posters

    离散化+线段树.数组开的不够大,wa了N多回. #include <iostream> #include <cstdio> #include <cstring> # ...

  9. Oracle自动增长的序列号

    首先建立序列: Create sequence user_id Increment Start Maxvalue .0E28 Minvalue nocycle Cache Noorder; 然后建立触 ...

  10. 笔记-人老了-github

    其实GITHUB是很不错的,虽然之前的JD泄露那件事情,后果很严重. 但是作为个人使用很不错的. github使用入门: 1:申请一个帐号 2:github使用ssh推送的.(ssh走的是加密) 所以 ...