题目描述:

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

输入格式:

第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

输出格式:

共n行,每行一个整数表示满足要求的数对(x,y)的个数

样例输入:

2

2 5 1 5 1

1 5 1 5 2

样例输出:

14

3

数据范围:

10%的数据满足:1≤n≤5,1≤a≤b≤100,1≤c≤d≤100

30%的数据满足:1≤n≤10

100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000

  令F(n)表示gcd为k的倍数的数对个数,f(d)表示gcd为k个对数,显然符合第二种反演的形式。

  然后再加上一个计数的小优化就可以AC了。

 #include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn=;
int prime[maxn],cnt;
int mu[maxn],sum[maxn];
bool check[maxn]; void Prepare(){
mu[]=;
for(int i=;i<=;i++){
if(!check[i]){
prime[++cnt]=i;
mu[i]=-;
}
for(int j=;j<=cnt;j++){
if(prime[j]*i>)break;
check[prime[j]*i]=true;
if(i%prime[j]==){
mu[prime[j]*i]=;
break;
}
mu[prime[j]*i]=mu[i]*-;
}
}
for(int i=;i<=;i++)
sum[i]=sum[i-]+mu[i];
} int T,k;
int a,b,c,d;
int C(int n,int m){
n/=k;m/=k;
int ret=,p;
if(n>m)swap(n,m);
for(int i=;i<=n;i=p+){
p=min(n/(n/i),m/(m/i));
ret+=(sum[p]-sum[i-])*(n/i)*(m/i);
}
return ret;
} int main(){
freopen("b.in","r",stdin);
freopen("b.out","w",stdout);
Prepare();
scanf("%d",&T);
while(T--){
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
printf("%d\n",C(b,d)-C(b,c-)-C(a-,d)+C(a-,c-));
}
return ;
}

数学(莫比乌斯反演):HAOI 2011 问题B的更多相关文章

  1. HDU 1695 GCD (莫比乌斯反演)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  2. SPOJ PGCD 4491. Primes in GCD Table && BZOJ 2820 YY的GCD (莫比乌斯反演)

    4491. Primes in GCD Table Problem code: PGCD Johnny has created a table which encodes the results of ...

  3. SPOJ 7001. Visible Lattice Points (莫比乌斯反演)

    7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...

  4. BZOJ 2301: [HAOI2011]Problem b (莫比乌斯反演)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 436  Solved: 187[Submit][S ...

  5. [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明)

    [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明) 题面 T组询问,每次给出a,b,c,d,k,求\(\sum _{i=a}^b\sum _{j=c}^d[ ...

  6. BZOJ 2005 [Noi2010]能量采集 (数学+容斥 或 莫比乌斯反演)

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4493  Solved: 2695[Submit][Statu ...

  7. 数学:莫比乌斯反演-GCD计数

    Luogu3455:莫比乌斯反演进行GCD计数 莫比乌斯反演就是用来解决这一类问题的,通常f函数是要求的那个,F函数是显然的 这样利用F的结果就可以推出来f的结果 在计算结果的时候整除分快儿一下就可以 ...

  8. luogu 4844 LJJ爱数数 (莫比乌斯反演+数学推导)

    题目大意:求满足gcd(a,b,c)==1,1/a+1/b=1/c,a,b,c<=n的{a,b,c}有序三元组个数 因为题目里有LJJ我才做的这道题 出题人官方题解https://www.cnb ...

  9. 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)

    先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...

  10. 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2371  Solved: 1143[Submit][Sta ...

随机推荐

  1. Java——(一)一切都是对象

    ------Java培训.Android培训.iOS培训..Net培训.期待与您交流! ------- 一.用引用操纵对象   在java中一切都被视为对象,但操纵的标识符实际上是对象的一个“引用”( ...

  2. css 图片平铺

    背景图尺寸(数值表示方式): #background-size{ background-size:200px 100px; } 背景图尺寸(百分比表示方式): #background-size2{ b ...

  3. 安装jdk后出现bash: ./java: /lib/ld-linux.so.2: bad ELF interpreter: 没有那个文件或目录

    用sudo yum install glibc.i686命令安装好glibc之后问题就解决了

  4. jQuery注册验证

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  5. java移位运算的用途

    参考下面这篇文章 http://blog.csdn.net/gaowen_han/article/details/7163104 http://jinguo.iteye.com/blog/540150 ...

  6. 使用Java BigDecimal进行精确运算

    首先我们先来看如下代码示例: public class Test_1 {     public static void main(String[] args) {         System.out ...

  7. StringHelper类,内容截取,特别适合资讯展示列表

    public class StringHelper    {        /// <summary>        /// 截字符串        /// </summary> ...

  8. >=ios8 应用内跳转到系统设置界面-openURL

    iOS8以后,苹果允许从应用内跳转到系统设置,但是调试结果表明,跳不到具体的设置项,使用前应该判断当前是否能够跳转到系统设置. 代码: NSURL *url = [NSURL URLWithStrin ...

  9. NOIP2012 借教室 Splay初探

    终于把区间操作的Splay搞明白了…… Splay的大致框架是这样的: [代码中的Zig-Zig和Zig-Zag操作其实是可以优化的,实际只需要3次passDown和3次update] templat ...

  10. Problem 1183 - 排列

    #include<iostream> #include<vector> #include<algorithm> using namespace std; int c ...