数学(莫比乌斯反演):HAOI 2011 问题B
题目描述:
对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。
输入格式:
第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k
输出格式:
共n行,每行一个整数表示满足要求的数对(x,y)的个数
样例输入:
2
2 5 1 5 1
1 5 1 5 2
样例输出:
14
3
数据范围:
10%的数据满足:1≤n≤5,1≤a≤b≤100,1≤c≤d≤100
30%的数据满足:1≤n≤10
100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000
令F(n)表示gcd为k的倍数的数对个数,f(d)表示gcd为k个对数,显然符合第二种反演的形式。
然后再加上一个计数的小优化就可以AC了。
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn=;
int prime[maxn],cnt;
int mu[maxn],sum[maxn];
bool check[maxn]; void Prepare(){
mu[]=;
for(int i=;i<=;i++){
if(!check[i]){
prime[++cnt]=i;
mu[i]=-;
}
for(int j=;j<=cnt;j++){
if(prime[j]*i>)break;
check[prime[j]*i]=true;
if(i%prime[j]==){
mu[prime[j]*i]=;
break;
}
mu[prime[j]*i]=mu[i]*-;
}
}
for(int i=;i<=;i++)
sum[i]=sum[i-]+mu[i];
} int T,k;
int a,b,c,d;
int C(int n,int m){
n/=k;m/=k;
int ret=,p;
if(n>m)swap(n,m);
for(int i=;i<=n;i=p+){
p=min(n/(n/i),m/(m/i));
ret+=(sum[p]-sum[i-])*(n/i)*(m/i);
}
return ret;
} int main(){
freopen("b.in","r",stdin);
freopen("b.out","w",stdout);
Prepare();
scanf("%d",&T);
while(T--){
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
printf("%d\n",C(b,d)-C(b,c-)-C(a-,d)+C(a-,c-));
}
return ;
}
数学(莫比乌斯反演):HAOI 2011 问题B的更多相关文章
- HDU 1695 GCD (莫比乌斯反演)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- SPOJ PGCD 4491. Primes in GCD Table && BZOJ 2820 YY的GCD (莫比乌斯反演)
4491. Primes in GCD Table Problem code: PGCD Johnny has created a table which encodes the results of ...
- SPOJ 7001. Visible Lattice Points (莫比乌斯反演)
7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...
- BZOJ 2301: [HAOI2011]Problem b (莫比乌斯反演)
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 436 Solved: 187[Submit][S ...
- [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明)
[BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明) 题面 T组询问,每次给出a,b,c,d,k,求\(\sum _{i=a}^b\sum _{j=c}^d[ ...
- BZOJ 2005 [Noi2010]能量采集 (数学+容斥 或 莫比乌斯反演)
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MBSubmit: 4493 Solved: 2695[Submit][Statu ...
- 数学:莫比乌斯反演-GCD计数
Luogu3455:莫比乌斯反演进行GCD计数 莫比乌斯反演就是用来解决这一类问题的,通常f函数是要求的那个,F函数是显然的 这样利用F的结果就可以推出来f的结果 在计算结果的时候整除分快儿一下就可以 ...
- luogu 4844 LJJ爱数数 (莫比乌斯反演+数学推导)
题目大意:求满足gcd(a,b,c)==1,1/a+1/b=1/c,a,b,c<=n的{a,b,c}有序三元组个数 因为题目里有LJJ我才做的这道题 出题人官方题解https://www.cnb ...
- 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)
先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...
- 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2371 Solved: 1143[Submit][Sta ...
随机推荐
- Maven学习总结——聚合与继承
一.聚合 如果我们想一次构建多个项目模块,那我们就需要对多个项目模块进行聚合 1.1.聚合配置代码 1 <modules> 2 <module>模块一</module&g ...
- HTML5小游戏源码收藏
html5魅族创意的贪食蛇游戏源码下载 html5网页版打砖块小游戏源码下载 html5 3D立体魔方小游戏源码下载 html5网页版飞机躲避游戏源码下载 html5三国人物连连看游戏源码下载 js ...
- 函数对象的prototype总结
通过看 http://www.cnblogs.com/mindsbook/archive/2009/09/19/javascriptYouMustKnowPrototype.html 该文章和对代码的 ...
- oracle 10g 恢复dmp文件。
1. 在winxp下,安装10g,默认选择,一路ok.(安装前自检出现dhcp警告,可直接忽略) 2.命令行,在xp下,输入sqlplus,即可启动,登陆用 sqlplus / as sysdba 用 ...
- ASIHttpRequest网络请求第三方类库使用方法详解
一. 第一步首先你要从网络上下载ASIHttpRequestlib, 下载以后解压,增加到你的工程里面, 这个时间检查工程内部是否已经导入成功,文件结构如下: ASIHTTPRequestConfig ...
- JDBC标准事物编程模式
事物简介: 事物是一种数据库中保证交易可靠的机制,JDBC支持数据库中事物的概念,默认情况下事物是默认提交的. 事物的特性: 1.事物必须是原子工作单元,对于其数据的修改,要么都执行,要么都不执行2. ...
- 页面点击关闭弹出提示js代码
代码效果为: <script> window.onbeforeunload = function() { return "您好!\n我是abc\n —————————————— ...
- 小记搭建WAPM运行ThinkPHP时所需要的配置
最近因为项目而接触到了Thinkphp,正在上手中.但昨天遇到几个问题,一下子牵连出之前搭建WAPM(windows+apache+PHP+MySQL)遗留的配置问题. aphache\conf目录下 ...
- Android中AppWidget的分析与应用:AppWidgetProvider .
from: http://blog.csdn.net/thl789/article/details/7887968 本文从开发AppWidgetProvider角度出发,看一个AppWidgetPrv ...
- [HOWTO] Install Sphinx for A Script Pro
Hi, Here's a small howto on installing Sphinx Search (http://sphinxsearch.com/) and configuring it t ...