4517: [Sdoi2016]排列计数

Time Limit: 60 Sec  Memory Limit: 128 MB
Submit: 693  Solved: 434
[Submit][Status][Discuss]

Description

求有多少种长度为 n 的序列 A,满足以下条件:
1 ~ n 这 n 个数在序列中各出现了一次
若第 i 个数 A[i] 的值为 i,则称 i 是稳定的。序列恰好有 m 个数是稳定的
满足条件的序列可能很多,序列数对 10^9+7 取模。

Input

第一行一个数 T,表示有 T 组数据。
接下来 T 行,每行两个整数 n、m。
T=500000,n≤1000000,m≤1000000

Output

输出 T 行,每行一个数,表示求出的序列数

Sample Input

5
1 0
1 1
5 2
100 50
10000 5000

Sample Output

0
1
20
578028887
60695423
  
  错排还是很简单的……

 #include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn=;
const long long mod=1000000007LL;
long long f[maxn],fac[maxn];
long long Inv(int x){
return x==?:(mod-mod/x)*Inv(mod%x)%mod;
} int main(){
#ifndef ONLINE_JUDGE
freopen("permutation.in","r",stdin);
freopen("permutation.out","w",stdout);
#endif
fac[]=;f[]=;f[]=;
for(int i=;i<=;i++)fac[i]=fac[i-]*i%mod;
for(int i=;i<=;i++)f[i]=(i-)*(f[i-]+f[i-])%mod; int T,n,m;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
printf("%d\n",f[n-m]*fac[n]%mod*Inv(fac[m])%mod*Inv(fac[n-m])%mod);
}
return ;
}

数学(错排):BZOJ 4517: [Sdoi2016]排列计数的更多相关文章

  1. BZOJ 4517: [Sdoi2016]排列计数 错排公式

    4517: [Sdoi2016]排列计数 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4517 Description 求有多少种长度为 ...

  2. BZOJ 4517: [Sdoi2016]排列计数 错排+逆元

    4517: [Sdoi2016]排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i, ...

  3. BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 911  Solved: 566[Submit][Status ...

  4. BZOJ 4517: [Sdoi2016]排列计数 [容斥原理]

    4517: [Sdoi2016]排列计数 题意:多组询问,n的全排列中恰好m个不是错排的有多少个 容斥原理强行推♂倒她 $恰好m个不是错排 $ \[ =\ \ge m个不是错排 - \ge m+1个不 ...

  5. Bzoj 4517: [Sdoi2016]排列计数(排列组合)

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MB Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ...

  6. BZOJ 4517: [Sdoi2016]排列计数 错排 + 组合

    从 $n$ 个数中选 $m$ 个不错排,那就是说 $n-m$ 个数是错排的. 用组合数乘一下就好了. Code: #include <cstdio> #include <algori ...

  7. bzoj 4517: [Sdoi2016]排列计数【容斥原理+组合数学】

    第一个一眼就A的容斥题! 这个显然是容斥的经典问题------错排,首先考虑没有固定的情况,设\( D_n \)为\( n \)个数字的错排方案数. \[ D_n=n!-\sum_{t=1}^{n}( ...

  8. BZOJ.4517.[SDOI2016]排列计数(错位排列 逆元)

    题目链接 错位排列\(D_n=(n-1)*(D_{n-1}+D_{n-2})\),表示\(n\)个数都不在其下标位置上的排列数. 那么题目要求的就是\(C_n^m*D_{n-m}\). 阶乘分母部分的 ...

  9. BZOJ 4517: [Sdoi2016]排列计数(组合数学)

    题面 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m ...

随机推荐

  1. 9.29noip模拟试题

    环上的游戏(cycle) 有一个取数的游戏.初始时,给出一个环,环上的每条边上都有一个非负整数.这些整数中至少有一个0.然后,将一枚硬币放在环上的一个节点上.两个玩家就是以这个放硬币的节点为起点开始这 ...

  2. java的各个队列之间的联系和区别是什么

    java的各个并发队列之间的联系和区别 java.util.concurrent是在并发编程中很常用的实用工具类 ArrayBlockingQueue, DelayQueue, LinkedBlock ...

  3. (转)基于PHP的cURL快速入门

    1. 原文:基于PHP的cURL快速入门 英文原文:http://net.tutsplus.com/tutorial ... for-mastering-curl/ 原文作者:Burak Guzel ...

  4. VS2015 Cordova Ionic移动开发(二)

    一.创建空白Cordova应用 打开VS,选择[新建项目],选择其它语言JavaScript或者TypeScript,语言的话就按个人喜好,喜欢JS就用JS,喜欢TS就用TS,推荐使用TS书写,代码结 ...

  5. Linux运行C#程序

    首先需要安装mono 安装教程http://www.cnblogs.com/aixunsoft/p/3422099.html 然后 用终端执行C#程序就可以了,mono 程序文件名 可以直接执行win ...

  6. jquery选择器的使用方式

    1.基本选择器   选择器 描述 返回 示例 代码说明 1 id选择器 根据指定的id匹配元素 单个元素 $("#one").css("background", ...

  7. [转]dos命令 cd命令使用说明[图文说明]

    Cddir(change directory,可以缩写为cd),其功能是显示当前目录的名称,或更改当前的目录. 应用时公带一个驱动器号(如: cd c:)在命令行cmd中输入 cd /? 可显示帮助信 ...

  8. Flightgear 编译

    一.FlightGear简介 FlightGear 始于1997年,是一个开源的多平台飞行模拟器. 二.FlightGear编译过程 FlightGear平台的说明文档见:http://wiki.fl ...

  9. OSG中相机参数的更改

    #pragma comment(lib, "osg.lib") #pragma comment(lib, "osgDB.lib") #pragma commen ...

  10. 【POJ1568】【极大极小搜索+alpha-beta剪枝】Find the Winning Move

    Description 4x4 tic-tac-toe is played on a board with four rows (numbered 0 to 3 from top to bottom) ...