[BZOJ 1084] [SCOI2005] 最大子矩阵 【DP】
题目链接:BZOJ - 1084
题目分析
我看的是神犇BLADEVIL的题解。
1)对于 m = 1 的情况, 首先可能不取 Map[i][1],先 f[i][k] = f[i - 1][k]; 再考虑取一段新的的情况,用 max(f[j][k - 1] + Sum[i][1] - Sum[j][1]) (0 <= j < i) 更新 f[i][j];
2) 对于 m = 2 的情况,用 f[i][j][k] 表示左列取到第 i 个,右列取到第 j 个,共 k 个矩形的最优值。
首先还是可能不取新的矩形,那么 f[i][j][k] = max(f[i - 1][j][k], f[i][j - 1][k]);
之后可能左列取一个新的矩形,用 max(f[ii][j][k - 1] + Sum[i][1] - Sum[ii][1]) (0 <= ii < i) 更新 f[i][j][k];
可能在右列取一个新的矩形,用 max(f[i][jj][k - 1] + Sum[j][2] - Sum[jj][2]) (0 <= jj < j) 更新 f[i][j][k];
若 i == j, 那么可能取一个跨两列的矩形,用 max(f[ii][ii][k - 1] + Sum[i][1] + Sum[i][2] - Sum[ii][1] - Sum[ii][2]) (0 <= ii < i) 更新 f[i][j][k];
代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <cmath> using namespace std; const int MaxN = 100 + 5, MaxK = 10 + 5; int n, m, EK;
int Map[MaxN][3], Sum[MaxN][3], f1[MaxN][MaxK], f2[MaxN][MaxN][MaxK]; inline int gmax(int a, int b) {return a > b ? a : b;}
inline int gmin(int a, int b) {return a < b ? a : b;} int main()
{
scanf("%d%d%d", &n, &m, &EK);
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
scanf("%d", &Map[i][j]);
Sum[i][j] = Sum[i - 1][j] + Map[i][j];
}
}
if (m == 1) {
for (int i = 1; i <= n; ++i) {
for (int k = 1; k <= EK; ++k) {
f1[i][k] = f1[i - 1][k];
for (int j = 0; j < i; ++j) {
f1[i][k] = gmax(f1[i][k], f1[j][k - 1] + Sum[i][1] - Sum[j][1]);
}
}
}
printf("%d\n", f1[n][EK]);
}
else {
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= n; ++j) {
for (int k = 1; k <= EK; ++k) {
f2[i][j][k] = gmax(f2[i - 1][j][k], f2[i][j - 1][k]);
for (int jj = 0; jj < i; ++jj)
f2[i][j][k] = gmax(f2[i][j][k], f2[jj][j][k - 1] + Sum[i][1] - Sum[jj][1]);
for (int jj = 0; jj < j; ++jj)
f2[i][j][k] = gmax(f2[i][j][k], f2[i][jj][k - 1] + Sum[j][2] - Sum[jj][2]);
if (i == j) {
for (int jj = 0; jj < i; ++jj)
f2[i][j][k] = gmax(f2[i][j][k], f2[jj][jj][k - 1] + Sum[i][1] + Sum[i][2] - Sum[jj][1] - Sum[jj][2]);
}
}
}
}
printf("%d\n", f2[n][n][EK]);
}
return 0;
}
[BZOJ 1084] [SCOI2005] 最大子矩阵 【DP】的更多相关文章
- BZOJ 1084: [SCOI2005]最大子矩阵 DP
1084: [SCOI2005]最大子矩阵 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1084 Description 这里有一个n* ...
- bzoj 1084: [SCOI2005]最大子矩阵【dp】
分情况讨论,m=1的时候比较简单,设f[i][j]为到i选了j个矩形,前缀和转移一下就行了 m=2,设f[i][j][k]为1行前i个,2行前j个,一共选了k个,i!=j的时候各自转移同m=1,否则转 ...
- BZOJ 1084 [SCOI2005]最大子矩阵 - 动态规划
传送门 题目大意: 从矩阵中取出k个互不重叠的子矩阵,求最大的和. 题目分析: 对于m=1,直接最大m子段和. 对于m=2: \(dp[i][j][k]\)表示扫描到第一列i和第2列j时选取了k个矩阵 ...
- BZOJ: 1084: [SCOI2005]最大子矩阵
NICE 的DP 题,明白了题解真是不错. Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1228 Solved: 622[Submit][Stat ...
- 【BZOJ 1084】 1084: [SCOI2005]最大子矩阵 (DP)
1084: [SCOI2005]最大子矩阵 Description 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. Input 第 ...
- BZOJ(6) 1084: [SCOI2005]最大子矩阵
1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3566 Solved: 1785[Submit][Sta ...
- 1084: [SCOI2005]最大子矩阵
1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1325 Solved: 670[Submit][Stat ...
- Bzoj 1088: [SCOI2005]扫雷Mine (DP)
Bzoj 1088: [SCOI2005]扫雷Mine 怒写一发,算不上DP的游戏题 知道了前\(i-1\)项,第\(i\)项会被第二列的第\(i-1\)得知 设\(f[i]\)为第一列的第\(i\) ...
- 洛谷P2331 [SCOI2005]最大子矩阵 DP
P2331 [SCOI2005]最大子矩阵 题意 : 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 第一行为n,m,k(1≤n≤ ...
随机推荐
- 习WebSocket一(WebSocket初识)[转]
http://www.cnblogs.com/wgp13x/p/3812579.html Java EE 7 去年刚刚发布了JSR356规范,使得WebSocket的Java API得到了统一,Tom ...
- 读TIJ -1 对象入门
<Thinking In Java·第 1 章对象入门> 第 1 章约20页,是对面向对象的程序设计(OOP)的一个综述. 依照其前言所述: "当中包含对"什么是对象& ...
- PHP读取文件头(2字节)判断文件类型(转)
看到此标题或许你会说是否是多此一举,直接判断扩展名不就知道文件类型了吗,但是扩展名很容易伪造,这样就绕过了判断.大部分的文件都会将一个特殊的数字或字符存放在文件的特定位置里(开始处的2个字节) /** ...
- 动态设置布局LayoutInflater
LayoutInflater作用是将layout的xml布局文件实例化为View类对象.LayoutInflater 的作用类似于 findViewById(),不同点是LayoutInflater是 ...
- 关于 Android 进程保活,你所需要知道的一切
早前,我在知乎上回答了这样一个问题:怎么让 Android 程序一直后台运行,像 QQ 一样不被杀死?.关于 Android 平台的进程保活这一块,想必是所有 Android 开发者瞩目的内容之一.你 ...
- php 两个数组是否相同,并且输出全面的数据,相同的加一个字段标示
方法一: $date是数组,数组中有字段id,name; $data1是数组,数组中有字段sort_id,name; 所以要通过$date[$i]['id']==$data1[$j]['sort_id ...
- 10.23 noip模拟试题
尼玛蛋pdf好难粘 直接写了 T1 /*开始写wa了 我真弱2333 关于p的排序规则不只是差值 为了字典序最小 还要拍别的*/ #include<cstdio> #include< ...
- HDFS的Java客户端操作代码(查看HDFS下的文件是否存在)
1.查看HDFS目录下得文件是否存在 package Hdfs; import java.io.IOException; import java.net.URI; import org.apache. ...
- 单例模式,多种实现方式JAVA
转载请注明出处:http://cantellow.iteye.com/blog/838473 第一种(懒汉,线程不安全): public class Singleton { private stati ...
- 在java中使用 File.renameTo(File)实现重命名.
Here is part of my files: [北京圣思园Java培训教学视频]Java.SE.前9日学习成果测试题(2010年12月2日).rar [北京圣思园Java培训教学视频]Java. ...