I thought of naming this post “Evolution of lambdas in C#”, then I decided that wouldn’t be closest appropriate name for the example that I wanted to discuss. The key to understand a lambda in C# is to understand a delegate. Besides the overly blatant blather – “delegates are nothing but function pointers”, I am going to assert that delegates in C# are very similar to function pointers in C or C++ ;). What did I say? OK!

Let’s get one thing straight, think about the paradigm of passing arguments to a method. A method with a parameter named int  i, would allow you to pass any argument like 1, 2, 3, 4, 5, 6, 7, 8, …32767…2147483647.

method(int i)
{
return;
}

So we sort of seem to get a flexibility there (basis of why we wanted a method in programming – reuse, and possibly call it with different arguments), instead of a method that takes a fixed argument, we have a flexibility to pass in a whole range of values. int is a data type. i is the parameter name, those numbers above are arguments. Very easy concept that any programmer under the sun wouldn’t even dare to defy. In case he did, we would all think he’s crazy, or he lost his brains somewhere towards obsession of trying to defy otherwise. Hey, easy, no arguments about the arguments there!

So somehow, we started writing methods to do repetitive actions. And then “fathers of computer programming” thought of passing a method itself as a argument to a method (a method with a parameter, that accepted a certain type of function – just like the way the data type int allowed us to pass 1, 2, 3, 4,….). But we had to do something extra to pass a function as an argument (we will have to define what our delegate is). int had a whole range of values defined – those numbers above. so we did not really have to re-define what an a int really was. For all we know is int is a datatype defined by the language that accepts certain values as arguments.

Well, in case of delegates, we are free to choose the arguments (or the possible set of values that a delegate type can accept). For instance, lets define a delegate in pseudo-code

public delegate int DoSomeMath(int a, int b);

so we defined a delegate!

delegate is a type, just as how int a is a type. We already know that int accepts the numbers above and it constrains itself to the boundaries of those numbers i.e, from 0 to 2147483647, considering signed integer, because the language/compiler writers programmed it that way. Now, the delegate DoSomeMath is capable of accepting any method that takes two int as input and returns an int as output; it constrains itself to any method that takes two int as input and returns an int as output.

What this means is, we can have methods like below, and they all qualify to be the accepted by the delegate type named DoSomeMath .

public int Add(int i, int j) { return i + j; }

public int Sub(int i, int j) { return i - j; }

public int Mul(int i, int j) { return i * j; }

public int Div(int i, int j) { return i / j; }

….

….

….

To summarize, delegate is a type, DoSomeMath is the name of the delegate, all the Add, Sub, Mul, Div methods would qualify to be the arguments of a parameter named math below

InvokeDelegate(DoSomeMath math)
{
math.Invoke(10, 20);
}

Now, that we know how to declare a delegate, and pass a method to it, what’s the point if don’t invoke the method that was passed as an argument? Now, stay with me as I will show you an example of how you could invoke a delegate. Well, you know enough is enough, I tried by best to get a grip on delegates, and that’s how I understood it.

Remember the steps involved,

  1. Create a delegate type
  2. Create methods matching the delegate
  3. Finally, invoke the delegate

What I have seem to have grasped, is that the step 2, was some sort of overhead for developers and Microsoft in it’s C# compiler added anonymous delegates, and later lambda expressions to save some development time by introducing a new syntax – in the industrial parlance, syntax sugar as they call it.

C# delegate syntax

Let’s dive in to C#, and try creating a delegate that seems to incorporate a common real time need. I want to write a little method named PrintAllFiles and make it accept a directory location, and a filter condition. The parameter named condition is special here, because it is delegate type. Lets create that.

private delegate bool FileFilterDelegate(FileInfo file);
 

The FileFilterDelegate is capable of accepting any method that accepts a FileInfo object and returns a bool. So the two methods below qualify to be our arguments since they both accept a FileInfo parameter and return a bool.

private static bool SmallFileFilter(FileInfo fi)
{
return fi.Length < 100;
} private static bool LargeFileFilter(FileInfo fi)
{
return fi.Length > 1000000;
}

Now, lets write the PrintAllFiles method

private static void PrintAllFiles(string path, FileFilterDelegate condition)
{
FileInfo[] files = new DirectoryInfo(path).GetFiles();
foreach (var item in files)
{
if (condition(item))
{
Console.WriteLine("File: {0} \tSize: {1}", item.FullName, item.Length);
}
}
DisplayMethodFooter();
}

Alright, where am I calling the delegate? it is right inside the if condition. item is of the type FileInfo, then I call the method that is passed as an argument (it could be SmallFileFilter, or LargeFileFilter) with an argument named item.

I guess, the benefit of programming with delegates this way is pretty clear. I have the flexibility of defining as many methods as I want, but my PrintAllFiles does not change. I could write another filter tomorrow, as long as it returns a bool and accepts an FileInfo object, I would be able to pass it to my PrintAllFiles method.

Now, we created a delegate, we wrote methods with names SmallFileFilter and LargeFileFilter, and then we invoked it. Couple of options here:

  • condition(item) would Invoke the method passed as an argument
  • condition.Invoke(item) would Invoke the method passed as an argument, just as the previous one did
  • condition.BeginInvoke(item) would Invoke the method passed as an argument in an asynchronous manner.

The essence here is the PrintAllFiles method that accepts a FileFilterDelegate. We could call it like below, by passing it the methods that match the FileFilterDelegate definition.

DisplayHeader("//traditional way - create a method accepting and returning the same types as the delegate");
PrintAllFiles(@"C:\", SmallFileFilter);
PrintAllFiles(@"C:\", LargeFileFilter);

Using Anonymous Delegates

We created methods named SmallFileFilter and LargeFileFilter, for a reason being that’s how we were accustomed to write a method. Think of some cool names and name the method that way, so I could use that name and call it over and over, or pass it as a delegate argument over and over.

But instead, it I wanted a filter for one-off usage, I really don’t want to create a method and give it a name. I could simply write a method on the fly without a name. how’d I do that? Well, we are talking about Anonymous delegates already.

See the code below, it is just a method right there, without a name. All that is missing there is private static bool SmallFileFilter, private static bool LargeFileFilter; that are essentially replaced by the keyword delegate.

DisplayHeader("//using Anonymous delegates - methods with no name");
PrintAllFiles(@"C:\", delegate(FileInfo fi) { return fi.Length < 100; });
PrintAllFiles(@"C:\", delegate(FileInfo fi) { return fi.Length > 1000000; });

Now I don’t really need a method with a name. I could just write a method without a name on the fly and that would be considered an anonymous delegate if we prefixed it with the delegate keyword. Point to understand is we didn’t really eliminate the need to write methods, we just eliminated the need to name them.

Lets do some lambdas

We know how to write a method without a name, a method that was supposed to be passed as an argument. We did that by using the delegate keyword. Now as they wanted to make things simple and simple everyday, they made us put a lambda ( => ) instead of the delegate keyword.

DisplayHeader("//using lambda - the delegate keyword is not needed anymore");
PrintAllFiles(@"C:\", (FileInfo fi) => { return fi.Length < 100; });
PrintAllFiles(@"C:\", (FileInfo fi) => { return fi.Length > 1000000; });

That’s it! We saw how to create a delegate, how to write a method matching the delegate, how to pass it as an argument, how to invoke it.

..and there was this need to not name a method.. we preferred Anonymous Delegates

….then saw how to oust anonymous delegate with a lambda expression.

I guess I have stayed and not swayed from the title of the post. Although, these are not the only uses of lambda, this is one way, you can get a grip on if your lambda highway is slippery yet. Other great articles about lambda expressions, and it’s uses are below. If they are in too detail, a glance would do, that’s what I did.

http://stackoverflow.com/questions/167343/c-sharp-lambda-expression-why-should-i-use-this

http://www.codeproject.com/Articles/17575/Lambda-Expressions-and-Expression-Trees-An-Introdu

http://www.codeproject.com/Articles/24255/Exploring-Lambda-Expression-in-C

http://msdn.microsoft.com/en-us/magazine/cc163362.aspx

Complete source code to test the samples and play with it.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO; namespace EvolutionOfLamdaExpression2
{
class Program
{
static void Main(string[] args)
{
DisplayHeader("//traditional way - create a method accepting and returning the same types as the delegate");
PrintAllFiles(@"C:\", SmallFileFilter);
PrintAllFiles(@"C:\", LargeFileFilter); DisplayHeader("//using Anonymous delegates - methods with no name");
PrintAllFiles(@"C:\", delegate(FileInfo fi) { return fi.Length < ; });
PrintAllFiles(@"C:\", delegate(FileInfo fi) { return fi.Length > ; }); DisplayHeader("//using lambda - the delegate keyword is not needed anymore");
PrintAllFiles(@"C:\", (FileInfo fi) => { return fi.Length < ; });
PrintAllFiles(@"C:\", (FileInfo fi) => { return fi.Length > ; }); DisplayHeader("//using Func delegate - use the inbuilt templatized delegates");
PrintAllFiles2(@"C:\", (FileInfo fi) => { return fi.Length < ; });
PrintAllFiles2(@"C:\", (FileInfo fi) => { return fi.Length > ; });
} private delegate bool FileFilterDelegate(FileInfo file); private static bool SmallFileFilter(FileInfo fi)
{
return fi.Length < ;
} private static bool LargeFileFilter(FileInfo fi)
{
return fi.Length > ;
} private static void PrintAllFiles(string path)
{
foreach (var item in new DirectoryInfo(path).GetFiles())
{
Console.WriteLine("File: {0} \tSize: {1}", item.FullName, item.Length);
}
DisplayMethodFooter();
} private static void PrintAllFiles(string path, FileFilterDelegate condition)
{
FileInfo[] files = new DirectoryInfo(path).GetFiles();
foreach (var item in files)
{
if (condition(item))
{
Console.WriteLine("File: {0} \tSize: {1}", item.FullName, item.Length);
}
}
DisplayMethodFooter();
} private static void PrintAllFiles2(string path, Func<FileInfo, bool> condition)
{
FileInfo[] files = new DirectoryInfo(path).GetFiles();
foreach (var item in files)
{
if (condition(item))
{
Console.WriteLine("File: {0} \tSize: {1}", item.FullName, item.Length);
}
}
DisplayMethodFooter();
} private static void DisplayHeader(string p)
{
Console.WriteLine("------------------------------------------------------------------------------------------");
Console.WriteLine(p);
Console.WriteLine("------------------------------------------------------------------------------------------");
} private static void DisplayMethodFooter()
{
Console.WriteLine("EOMEOMEOMEOMEOMEOMEOMEOMEOMEOMEOMEOMEOMEOMEOMEOMEOMEOMEOMEOMEOMEOMEOMEOMEOMEOMEOMEOM");
} }
}

From delegates to lambdas z的更多相关文章

  1. 【Python】使用torrentParser1.03对多文件torrent的分析结果

    Your environment has been set up for using Node.js 8.5.0 (x64) and npm. C:\Users\horn1>cd C:\User ...

  2. 【Xamarin笔记】Events, Protocols and Delegates

    Events, Protocols and Delegates   事件.协议和委托 This article presents the key iOS technologies used to re ...

  3. F​l​e​x​4​+​s​p​r​i​n​g​+​h​i​b​e​r​n​a​t​e​+​B​l​a​z​e​D​S​整合案例

    http://wenku.baidu.com/link?url=7v5xAyD2nvChQRT60QewpvAASFHMZNvD0OxX11OASYvae8jbVNsr5I000TwwYOlChzq0 ...

  4. Android立体旋转动画实现与封装(支持以X、Y、Z三个轴为轴心旋转)

    本文主要介绍Android立体旋转动画,或者3D旋转,下图是我自己实现的一个界面 立体旋转分为以下三种: 1. 以X轴为轴心旋转 2. 以Y轴为轴心旋转 3. 以Z轴为轴心旋转--这种等价于andro ...

  5. Z字形扫描(201412-2)

    问题描述 在图像编码的算法中,需要将一个给定的方形矩阵进行Z字形扫描(Zigzag Scan).给定一个n×n的矩阵,Z字形扫描的过程如下图所示: 对于下面的4×4的矩阵, 1 5 3 9 3 7 5 ...

  6. 【IOS】将一组包含中文的数据按照#ABC...Z✿分组

    上一篇文章[IOS]模仿windowsphone列表索引控件YFMetroListBox里面 我们一步步的实现了WindowsPhone风格的索引. 但是有没有发现,如果你要实现按照字母排序,你还得自 ...

  7. Java 压缩/ 解压 .Z 文件

    1.问题描述 公司项目有需要用 JAVA 解压 .z文件. .z 是 unix 系统常见的压缩文件. 2.源码 import com.chilkatsoft.CkUnixCompress; impor ...

  8. 中文编程语言Z语言开源正式开源!!!

    (Z语言基于.NET环境,源码中有很多高技术的代码,让更多的人知道对大家有会有很好的帮助,请管理员一点要批准放在首页) 本人实现的中文编程语言Z语言现在正式开源,采用LGPL协议. 编译器核心的网址为 ...

  9. 开发该选择Blocks还是Delegates

    前文:网络上找了很多关于delegation和block的使用场景,发现没有很满意的解释,后来无意中在stablekernel找到了这篇文章,文中作者不仅仅是给出了解决方案,更值得我们深思的是作者独特 ...

随机推荐

  1. php configure help

    `configure' configures this package to adapt to many kinds of systems. Usage: ./configure [OPTION].. ...

  2. js实现浏览器兼容复制功能

    经常看到这样一种效果:就是单击一个按钮,就将某个区域内的内容,复制到了剪切板中.其实这个功能实现起来也不难,核心就是用到了window子对象clipboardData的一个方法:setData()语法 ...

  3. 不用jsonp实现跨域请求

    这几天要用到跨域请求,我在网上找了好多资料,最后自己研究出来一个比较简单方便的, 请求的过程和jquery普通的ajax一样.我用的是.net平台 ,IIS7.5 来看一下后台的代码,我是用MVC的C ...

  4. m2e插件的新下载地址

    今天在按照<Maven实战>这本书给eclipse配置maven的m2eclipse插件的时候发现,书中写的老的下载地址http://m2eclipse.sonatype.org/site ...

  5. 七,WPF的元素绑定

    数据绑定是一种关系,该关系告诉WPF从一个源对象提取一些信息,并使用这些信息设置目标对象的属性,目标属性总是依赖项属性,然而,源对象可以是任何内容. 源对象是WPF元素并且源属性是依赖项属性的数据绑定 ...

  6. VM 启动时报错:Failed to lock the file

    http://www.cnblogs.com/kristain/articles/2491966.html Reason: Failed to lock the fileGoogle 了一下, 在網路 ...

  7. js函数文件排序化

    因为本人的某些小强迫症,写了一个格式化并根据js函数名排序的c++程序,此作mark #include <stdio.h> #include <map> #include &l ...

  8. ubuntu 12.04 安装 nginx+php+mysql web服务器

    Nginx 是一个轻量级,以占用系统资源少,运行效率而成为web服务器的后起之秀,国内现在很多大型网站都以使用nginx,包括腾讯.新浪等大型信息网站,还有淘宝网站使用的是nginx二次开发的web服 ...

  9. sjtu1364 countcountcount

    Description 我有一个元素个数为\(n\)的整数数组\(a\)和\(Q\)个问题,每个问题有\(x,y\)两个参数,我要数有多少个整数\(K\)满足\(K\)在\(a[x]-a[y]\)中出 ...

  10. 深度观察:腾讯收购大众点评背景下的O2O大格局

    [亿欧导读] 腾讯入股大众点评获得20%股权,详情解读:①大众点评:独立自主为底线,要钱大于要流量:②腾讯:承认原生活服务O2O失败,丰富移动支付应用场景:③美团承受压力,拉手窝窝继续苦等买家:④BA ...