Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 50596   Accepted: 19239

Description

The Joseph's problem is notoriously known. For those who are not familiar with the original problem: from among n people, numbered 1, 2, . . ., n, standing in circle every mth is going to be executed and only the life of the last remaining person will be saved. Joseph was smart enough to choose the position of the last remaining person, thus saving his life to give us the message about the incident. For example when n = 6 and m = 5 then the people will be executed in the order 5, 4, 6, 2, 3 and 1 will be saved.

Suppose that there are k good guys and k bad guys. In the circle the first k are good guys and the last k bad guys. You have to determine such minimal m that all the bad guys will be executed before the first good guy.

Input

The input file consists of separate lines containing k. The last line in the input file contains 0. You can suppose that 0 < k < 14.

Output

The output file will consist of separate lines containing m corresponding to k in the input file.

Sample Input

3
4
0

Sample Output

5
30

Source

THINKING

   本题是约瑟夫环变形 先引入Joseph递推公式,设有n个人(0,...,n-1),数m,则第i轮出局的人为f(i)=(f(i-1)+m-1)%(n-i+1),f(0)=0;

  f(i) 表示当前子序列中要退出的那个人(当前序列编号为0~(n-i));

  拿个例子说:K=4,M=30;

  f(0)=0;

  f(1)=(f(0)+30-1)%8=5; 序列(0,1,2,3,4,5,6,7)中的5

  f(2)=(f(1)+30-1)%7=6; 序列(0,1,2,3,4,6,7)中的7

  f(3)=(f(2)+30-1)%6=5; 序列(0,1,2,3,4,6)中的6

  f(4)=(f(3)+30-1)%5=4; 序列(0,1,2,3,4)中的4

  假设当前剩下i个人(i<=n),显然这一轮m要挂(因为总是从1开始数).经过这一轮,剩下的人是:1 2 3 ... m- 1 m + 1 ... i, 我们将从m+1开始的数映射成1, 则m+2对应2, n对应i - m, 1对应成i - m + 1  m - 1对应i - 1,那么现在的问题变成了已知i - 1个人进行循环报数m,求出去的人的序号。假设已经求出了i- 1个人循环报数下最后一个出去的人的序号X0,那么它在n个人中的序号X1=(X0+ m - 1) % n + 1,  最初的X0=1 ,反复迭代X0和X1可以求出.

  接下来说说m的取值范围:我们考察一下只剩下k+1个人时候情况,即坏人还有一个未被处决,那么在这一轮中结束位置必定在最后一个坏人,那么开始位置在哪呢?这就需要找K+2个人的结束位置,然而K+2个人的结束位置必定是第K+2个人或者第K+1个人,这样就出现两种顺序情况:GGGG.....GGGXB 或  GGGG......GGGBX (X表示有K+2个人的那一轮退出的人)所以有K+1个人的那一轮的开始位置有两种可能即第一个位置或K+1的那个位置,限定m有两种可能:t(k+1) 或 t(k+1)+1; t>=1; 若遍历每一个m必定超时,避免超时则需要打表和限制m的范围。

const Joseph:array [..] of  longint=(,,,,,,,,,,,,,,);
var x:longint;
begin
while true do
begin
readln(x);
if x= then halt;
writeln(Joseph[x]);
end;
end.

[POJ1012]Joseph的更多相关文章

  1. poj1012.Joseph(数学推论)

    Joseph Time Limit: 1 Sec  Memory Limit: 64 MB Submit: 493  Solved: 311 Description The Joseph's prob ...

  2. 【poj1012】 Joseph

    http://poj.org/problem?id=1012 (题目链接) 半年前的考试题..任然清晰的记得那次差10分就AK... 题意 约瑟夫环,有前k个好人,后k个坏人,要求使得后k个坏人先死的 ...

  3. Joseph(JAVA版)

    package Joseph;//约瑟夫环,m个人围成一圈.从第K个人开始报数,报道m数时,那个人出列,以此得到出列序列//例如1,2,3,4.从2开始报数,报到3剔除,顺序为4,3,1,2publi ...

  4. Hdu 1443 Joseph

    Joseph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

  5. 一道模拟题:改进的Joseph环

    题目:改进的Joseph环.一圈人报数,报数上限依次为3,7,11,19,循环进行,直到所有人出列完毕. 思路:双向循环链表模拟. 代码: #include <cstdio> #inclu ...

  6. POJ 1012 Joseph

    Joseph Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 44650   Accepted: 16837 Descript ...

  7. poj1012

    Joseph Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 52097   Accepted: 19838 Descript ...

  8. hdu 1443 Joseph (约瑟夫环)

    Joseph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

  9. UVa 1363 (数论 数列求和) Joseph's Problem

    题意: 给出n, k,求 分析: 假设,则k mod (i+1) = k - (i+1)*p = k - i*p - p = k mod i - p 则对于某个区间,i∈[l, r],k/i的整数部分 ...

随机推荐

  1. React Native在虚拟运行app时,报错RCTRootView not found,怎么解决?

    报错: 解决方案:

  2. PHP初学留神(四)

    这周去听了Google的演讲,从Idea到Code的商业宣传.不过因为是头一次听英文演讲,心里还是很舒服.这周主要做的是Bootstrap前端美化,这个框架也比较好玩.在php上面花的时间相对少了,也 ...

  3. VC6.0生成的exe文件图标

    以下是我网上收到的方法 我都试过 成功不了 具体说下我遇到的问题 VC6.0生成的exe文件图标是用Icon下几个图标中value值最小的,顺序为IDR_MAINFRAME.IDR_ICONTETYP ...

  4. 在SQL中导入Excel数据时强制以文本类型导入

    Excel不是关系型数据库,在导入到sql中时对于数值型,sql有时int型会处理成float,有时数字文本混排的列,sql会认为是数值型,导入的结果有的数据变成了null,但是用sql导出excel ...

  5. WPF从入门到放弃系列第二章 XAML

    本文是作者学习WPF从入门到放弃过程中的一些总结,主要内容都是对学习过程中拜读的文章的整理归纳. 参考资料 XAML 概述 (WPF):https://msdn.microsoft.com/zh-cn ...

  6. Catch Application Exceptions in a Windows Forms Application

    You need to handle the System.Windows.Forms.Application.ThreadException event for Windows Forms. Thi ...

  7. nutch 生产者队列的大小如何控制 threadcount * 50

    如果topN 设置为1000万 ,不会这1000万都放到QueueFeeder(内存)中,而是从文件系统中(hdfs)中迭代不断填充QueueFeeder.队列中默认存放 threadcount * ...

  8. linux 性能分析常规逻辑和手段总结

    一. 追查cpu占用较高的进程(线程)  1 . 如何查找出当前系统中占用cpu或者内存最高的进程? ps aux |sort -rn -k 3 |head -n3 查找出当前系统中cpu资源占用前三 ...

  9. ASP.NET MVC 入门2、项目的目录结构与核心的DLL

    我们新建一个ASP.NET MVC的Web Application后,默认的情况下,项目的目录结构如下: App_Data :这个目录跟我们一般的ASP.NET website是一样的,用于存放数据. ...

  10. Android USB Host与HID通讯 (二)

    不好意思,从上一篇到现在确实比较忙,中间又外出了一段时间,虽然也上LOFTER,或者看到一些朋友QQ上加我,给我发信息询问,有些看到了有些可能没看到,偶尔回复了一两个,也不咋的详细,在此我想说,一方面 ...