Asm Shader Reference --- Shader Model 1 part
ps部分
ps_1_1,ps_1_2,ps_1_3,ps_1_4
总览
Instruction Set | |||||||
版本 | 指令槽 | 1_1 | 1_2 | 1_3 | 1_4 | ||
ps | 版本号 | 0 | x | x | x | x | |
常数指令 | 1_1 | 1_2 | 1_3 | 1_4 | |||
def - ps | 定义常数 | 0 | x | x | x | x | |
相位指令 | 1_1 | 1_2 | 1_3 | 1_4 | |||
phase - ps | 在相位1与相位2之间转换 | 0 | x | ||||
算法指令 | 1_1 | 1_2 | 1_3 | 1_4 | |||
add - ps | 两个向量相加 | 1 | x | x | x | x | |
bem - ps | 使用一个假的 bump environment-map 变换 | 2 | x | ||||
cmp - ps | 以0为比较赋值 | 1¹ | x | x | x | ||
cnd - ps | 以0.5为比较赋值 | 1 | x | x | x | x | |
dp3 - ps | 三个分量点积 | 1 | x | x | x | x | |
dp4 - ps | 四个分量点积 | 1¹ | x | x | x | ||
lrp - ps | 线性插值 | 1 | x | x | x | x | |
mad - ps | 每个分量乘完了加 | 1 | x | x | x | x | |
mov - ps | 赋值 | 1 | x | x | x | x | |
mul - ps | 乘法 | 1 | x | x | x | x | |
nop - ps | 无运算 | 0 | x | x | x | x | |
sub - ps | 减法 | 1 | x | x | x | x | |
图片指令 | 1_1 | 1_2 | 1_3 | 1_4 | |||
tex - ps | 对图片采样 | 1 | x | x | x | ||
texbem - ps | 使用一个假的 bump environment-map 变换 | 1 | x | x | x | ||
texbeml - ps | 使用一个经过亮度校正的假的 bump environment-map 变换 | 1+1² | x | x | x | ||
texcoord - ps | 返回图片坐标为颜色 | 1 | x | x | x | ||
texcrd - ps | 复制图片坐标为颜色 | 1 | x | ||||
texdepth - ps | 计算深度值 | 1 | x | ||||
texdp3 - ps | 贴图数据与贴图坐标之间的三个分量的点积 | 1 | x | x | |||
texdp3tex - ps | 三个分量点积并且查找1D图片 | 1 | x | x | |||
texkill - ps | 基于一个比较来取消像素的渲染 | 1 | x | x | x | x | |
texld - ps_1_4 | 对图片采样 | 1 | x | ||||
texm3x2depth - ps | 逐像素计算深度值用于深度测试 | 1 | x | ||||
texm3x2pad - ps | First row matrix multiply of a two-row matrix multiply | 1 | x | x | x | ||
texm3x2tex - ps | 最后一行与一个二行矩阵进行矩阵乘法 | 1 | x | x | x | ||
texm3x3 - ps | 3x3矩阵相乘 | 1 | x | x | |||
texm3x3pad - ps | 第一行或者第二行与一个三行矩阵进行矩阵乘法,需要与 texm3x3 - ps, texm3x3spec - ps, texm3x3vspec - ps, 或 texm3x3tex - ps结合使用 | 1 | x | x | x | ||
texm3x3spec - ps | 最后一行与一个三行矩阵进行矩阵乘法使用计算结果进行图片查找,可以用于镜面反射与环境贴图 | 1 | x | x | x | ||
texm3x3tex - ps | 通过3x3 矩阵乘积的结果来查找图片 | 1 | x | x | x | ||
texm3x3vspec - ps | 用一个3x3矩阵乘法的计算结果作为法向量,与一个非常量的视线方向向量进行图片查找,可以用于镜面反射与环境贴图 | 1 | x | x | x | ||
texreg2ar - ps | 通过r和a通道作为uv来采样图片 | 1 | x | x | x | ||
texreg2gb - ps | 通过g和b通道作为uv来采样图片 | 1 | x | x | x | ||
texreg2rgb - ps | 通过r、g和b通道来采样图片 | 1 | x | x | |||
部分函数细节
bem
语法
bem dst.rg, src0, src1
算法
(Given n == dest register #)
dest.r = src0.r + D3DTSS_BUMPENVMAT00(stage n) * src1.r
+D3DTSS_BUMPENVMAT10(stage n) * src1.g
dest.g = src0.g + D3DTSS_BUMPENVMAT01(stage n) * src1.r
+D3DTSS_BUMPENVMAT11(stage n) * src1.g
cmp
语法
cmp dst, src0, src1, src2
如果src0>=0返回src1否则src2
算法
ps_1_4
def c0, -0.6, 0.6, 0, 0.6
def c1 0,0,0,0
def c2 1,1,1,1
mov r1, c1
mov r2, c2
cmp r0, c0, r1, r2 // r0 is assigned 1,0,0,0 based on the following:
// r0.x = c2.x because c0.x < 0
// r0.y = c1.y because c0.y >= 0
// r0.z = c1.z because c0.z >= 0
// r0.w = c1.w because c0.w >= 0
cnd
语法
cmp dst, src0, src1, src2
如果src0>0.5 返回src1否则src2
算法
在1_1到1_3版本,src0必须为r0.a(单通道)
// Version 1_1 to 1_3
if (r0.a > 0.5)
dest = src1
else
dest = src2
在1_4版本就可以每个通道分别比较值
for each component in src0
{
if (src0.component > 0.5)
dest.component = src1.component
else
dest.component = src2.component
}
示例
ps_1_4
def c0, -0.5, 0.5, 0, 0.6
def c1, 0,0,0,0
def c2, 1,1,1,1
cnd r1, c0, c1, c2 // r0 contains 1,1,1,0 because
// r1.x = c2.x because c0.x <= 0.5
// r1.y = c2.y because c0.y <= 0.5
// r1.z = c2.z because c0.z <= 0.5
// r1.w = c1.w because c0.w > 0.5
dp3
语法
dp3 dst, src0, src1
计算三个分量的点积
算法
dest.x = dest.y = dest.z = dest.w =
(src0.x * src1.x) + (src0.y * src1.y) + (src0.z * src1.z);
dp4
语法
dp4 dst, src0, src1
计算四个分量的点积
算法
dest.x = dest.y = dest.z = dest.w =
(src0.x * src1.x) + (src0.y * src1.y) +
(src0.z * src1.z) + (src0.w * src1.w);
lrp
语法
lrp dst, src0, src1, src2
基于src0对src1与src2做线性插值运算
算法
dest = src0 * src1 + (1-src0) * src2
// which is the same as
dest = src2 + src0 * (src1 - src2)
mad
语法
mad dst, src0, src1, src2
做(src0 * src1) + src2处理
算法
dest.x = src0.x * src1.x + src2.x;
dest.y = src0.y * src1.y + src2.y;
dest.z = src0.z * src1.z + src2.z;
dest.w = src0.w * src1.w + src2.w;
mov
语法
mov dst, src
转移值处理
mul
语法
mul dst, src0, src1
乘法
算法
dest.x = src0.x * src1.x;
dest.y = src0.y * src1.y;
dest.z = src0.z * src1.z;
dest.w = src0.w * src1.w;
nop
语法
nop
执行无运算
sub
语法
sub dst, src0, src1
减法运算
算法
dest = src0 - src1
vs部分
vs1
总览
Instruction Set | |||||||
Name | Description | Instruction slots | Setup | Arithmetic | New | ||
add - vs | 两个向量加法运算 | 1 | x | x | |||
dcl_usage input (sm1, sm2, sm3 - vs asm) | 声明输入向量寄存器 (see Registers - vs_1_1) | 0 | x | x | |||
def - vs | 定义常量 | 0 | x | x | |||
dp3 - vs | 三个分量的点积运算 | 1 | x | x | |||
dp4 - vs | 四个分量的点积运算 | 1 | x | x | |||
dst - vs | 计算距离向量 | 1 | x | x | |||
exp - vs | 全精度的2的x次方计算 | 10 | x | x | |||
exp - vs | 半精度的2的x次方计算 | 1 | x | x | |||
frc - vs | 小数部分 | 3 | x | x | |||
lit - vs | 局部光计算 | 1 | x | x | |||
log - vs | 全精度的 log₂(x)计算 | 10 | x | x | |||
logp - vs | 半精度的 log₂(x)计算 | 1 | x | x | |||
m3x2 - vs | 3x2 乘法 | 2 | x | x | |||
m3x3 - vs | 3x3 乘法 | 3 | x | x | |||
m3x4 - vs | 3x4 乘法 | 4 | x | x | |||
m4x3 - vs | 4x3 乘法 | 3 | x | x | |||
m4x4 - vs | 4x4 乘法 | 4 | x | x | |||
mad - vs | 每个分量乘完了加 | 1 | x | x | |||
max - vs | 求最大值 | 1 | x | x | |||
min - vs | 求最小值 | 1 | x | x | |||
mov - vs | 赋值 | 1 | x | x | |||
mul - vs | 乘法 | 1 | x | x | |||
nop - vs | 无运算 | 1 | x | x | |||
rcp - vs | 倒数 | 1 | x | x | |||
rsq - vs | 平方根之后的倒数 | 1 | x | x | |||
sge - vs | 大于或等于比较,返回1或0 | 1 | x | x | |||
slt - vs | 小于比较,返回1或0 | 1 | x | x | |||
sub - vs | 减法 | 1 | x | x | |||
vs | 版本 | 0 | x | x | |||
部分函数细节
dst
语法
dst dest, src0, src1
计算距离向量
src0为(ignored, d*d, d*d,ignored)
src1为(ignored, 1/d,ignored, 1/d)
最终得到的结果为(1, d, d*d, 1/d)
算法
dest.x = 1;
dest.y = src0.y * src1.y;
dest.z = src0.z;
dest.w = src1.w;
exp
语法
exp dst, src
算法
dest.x = dest.y = dest.z = dest.w = (float)pow(2, src.replicateSwizzleComponent);
frc
语法
frc dst, src
算法
dest.x = src.x - (float)floor(src.x);
dest.y = src.y - (float)floor(src.y);
dest.z = src.z - (float)floor(src.z);
dest.w = src.w - (float)floor(src.w);
lit
语法
lit dst, src
src的各部分为
src.x = N*L ; The dot product between normal and direction to light
src.y = N*H ; The dot product between normal and half vector
src.z = ignored ; This value is ignored
src.w = exponent ; The value must be between -128.0 and 128.0
算法
dest.x = 1;
dest.y = 0;
dest.z = 0;
dest.w = 1;
float power = src.w;
const float MAXPOWER = 127.9961f;
if (power < -MAXPOWER)
power = -MAXPOWER; // Fits into 8.8 fixed point format
else if (power > MAXPOWER)
power = MAXPOWER; // Fits into 8.8 fixed point format
if (src.x > 0)
{
dest.y = src.x;//diffuse
if (src.y > 0)
{
// Allowed approximation is EXP(power * LOG(src.y))
dest.z = (float)(pow(src.y, power));//specular
}
}
log
语法
log dst, src
算法
float v = abs(src);
if (v != 0)
{
dest.x = dest.y = dest.z = dest.w =
(float)(log(v)/log(2));
}
else
{
dest.x = dest.y = dest.z = dest.w = -FLT_MAX;
}
logp
语法
logp dst, src
算法
float f = abs(src);
if (f != 0)
dest.x = dest.y = dest.z = dest.w = (float)(log(f)/log(2));
else
dest.x = dest.y = dest.z = dest.w = -FLT_MAX;
m3x2
语法
m3x2 dst, src0, src1
算法
dest.x = (src0.x * src1.x) + (src0.x * src1.y) + (src0.x * src1.z);
dest.y = (src0.x * src2.x) + (src0.y * src2.y) + (src0.z * src2.z);
m3x3
语法
m3x3 dst,src0, src1
算法
dest.x = (src0.x * src1.x) + (src0.y * src1.y) + (src0.z * src1.z);
dest.y = (src0.x * src2.x) + (src0.y * src2.y) + (src0.z * src2.z);
dest.z = (src0.x * src3.x) + (src0.y * src3.y) + (src0.z * src3.z);
m3x4
语法
m3x4 dst, src0, src1
算法
dest.x = (src0.x * src1.x) + (src0.y * src1.y) + (src0.z * src1.z);
dest.y = (src0.x * src2.x) + (src0.y * src2.y) + (src0.z * src2.z);
dest.z = (src0.x * src3.x) + (src0.y * src3.y) + (src0.z * src3.z);
dest.w = (src0.x * src4.x) + (src0.y * src4.y) + (src0.z * src4.z);
m4x3
语法
m4x3dst, src0, src1
算法
dest.x = (src0.x * src1.x) + (src0.y * src1.y) + (src0.z * src1.z) + (src0.w * src1.w);
dest.y = (src0.x * src2.x) + (src0.y * src2.y) + (src0.z * src2.z) + (src0.w * src2.w);
dest.z = (src0.x * src3.x) + (src0.y * src3.y) + (src0.z * src3.z) + (src0.w * src3.w);
m4x4
语法
m4x4 dst, src0, src1
算法
dest.x = (src0.x * src1.x) + (src0.y * src1.y) + (src0.z * src1.z) +
(src0.w * src1.w);
dest.y = (src0.x * src2.x) + (src0.y * src2.y) + (src0.z * src2.z) +
(src0.w * src2.w);
dest.z = (src0.x * src3.x) + (src0.y * src3.y) + (src0.z * src3.z) +
(src0.w * src3.w);
dest.w = (src0.x * src4.x) + (src0.y * src4.y) + (src0.z * src4.z) +
(src0.w * src4.w);
max
语法
max dst, src0, src1
算法
dest.x=(src0.x >= src1.x) ? src0.x : src1.x;
dest.y=(src0.y >= src1.y) ? src0.y : src1.y;
dest.z=(src0.z >= src1.z) ? src0.z : src1.z;
dest.w=(src0.w >= src1.w) ? src0.w : src1.w;
min
语法
min dst, src0, src1
算法
dest.x=(src0.x < src1.x) ? src0.x : src1.x;
dest.y=(src0.y < src1.y) ? src0.y : src1.y;
dest.z=(src0.z < src1.z) ? src0.z : src1.z;
dest.w=(src0.w < src1.w) ? src0.w : src1.w;
rcp
语法
rcp dst, src
算法
float f = src0;
if(f == 0.0f)
{
f = FLT_MAX;
}
else
{
if(f != 1.0)
{
f = 1/f;
}
}
dest = f;
rsq
语法
rsq dst, src
算法
float f = abs(src0);
if (f == 0)
f = FLT_MAX
else
{
if (f != 1.0)
f = 1.0/(float)sqrt(f);
}
dest.z = dest.y = dest.z = dest.w = f;
sge
语法
sge dst, src0, src1
src0大于等于 src1返回1否则为0
算法
dest.x = (src0.x >= src1.x) ? 1.0f : 0.0f;
dest.y = (src0.y >= src1.y) ? 1.0f : 0.0f;
dest.z = (src0.z >= src1.z) ? 1.0f : 0.0f;
dest.w = (src0.w >= src1.w) ? 1.0f : 0.0f;
slt
语法
slt dst, src0, src1
src0小于 src1返回1否则为0
算法
dest.x = (src0.x < src1.x) ? 1.0f : 0.0f;
dest.y = (src0.y < src1.y) ? 1.0f : 0.0f;
dest.z = (src0.z < src1.z) ? 1.0f : 0.0f;
dest.w = (src0.w < src1.w) ? 1.0f : 0.0f;
库: https://msdn.microsoft.com/en-us/library/bb219840(v=vs.85).aspx
--wolf96 2017/1/1
Asm Shader Reference --- Shader Model 1 part的更多相关文章
- Asm Shader Reference --- Shader Model 2.x part
ps部分 概览 Instruction Set Name Description Instruction slots S ...
- Asm Shader Reference --- Shader Model 2.0 part
ps部分 ps_2_0 概览 Instruction Set Name Description Instruction slot ...
- Asm Shader Reference --- Shader Model 3.0 part
ps部分 概览 Instruction Set Name Description Instruction slots S ...
- Unity3D for VR 学习(9): Unity Shader 光照模型 (illumination model)
关于光照模型 所谓模型,一般是由学术算法发起, 经过大量实际数据验证而成的可靠公式 现在还记得2009年做TD-SCDMA移动通信算法的时候,曾经看过自由空间传播模型(Free space propa ...
- Create a Basic Shader in Shader Forge
[Create a Basic Shader in Shader Forge] 1.打开ShaderForge.Window-> Shader Forge.(打开速度较慢) 2.通过NewSha ...
- UnityShader之顶点片段着色器Vertex and Fragment Shader【Shader资料】
顶点片段着色器 V&F Shader:英文全称Vertex and Fragment Shader,最强大的Shader类型,也是我们在使用ShaderLab中的重点部分,属于可编程管线,使用 ...
- UnityShader之固定管线Fixed Function Shader【Shader资料3】
Fixed function shader简介: 属于固定渲染管线 Shader, 基本用于高级Shader在老显卡无法显示时的情况.使用的是ShaderLab语言,语法与微软的FX files 或 ...
- 【Unity Shader】Shader基础
目录 Chapter3 Unity Shader 基础 Chapter3 Unity Shader 基础 概述 在Unity需要材质(Material)与Unity Shader配合使用来达到满意的效 ...
- Unity5中新的Shader体系简析
一.Unity5中新的Shader体系简析 Unity5和之前的书写模式有了一定的改变.Unity5时代的Shader Reference官方文档也进一步地变得丰满. 主要需要了解到的是,在原来的Un ...
随机推荐
- 关于Active控件的电子签名 转
关于Active控件的电子签名 两种方案:一是自己制作证书,客户端安装证书后就可以识别该控件:二就是买官方的喽,在国内找verisign的代理,负责各种电子签名,任何一台浏览器都可以识别该证书.该公司 ...
- 51nod贪心算法入门-----独木舟问题
独木舟问题 n个人,已知每个人体重,独木舟承重固定,每只独木舟最多坐两个人,可以坐一个人或者两个人.显然要求总重量不超过独木舟承重,假设每个人体重也不超过独木舟承重,问最少需要几只独木舟? 分析:按照 ...
- fsockopen
fsockopen — 打开一个网络连接或者一个Unix套接字连接 说明 resource fsockopen ( string $hostname [, int $port = -1 [, int ...
- 说说对C语言指针的理解
指针困扰了一些学习编程的人,或许你的老师会告诉你,指针比较难理解. 我当时被老师的话唬住所以学习指针那章的时候都没心情听课.(说得像讲别的内容时我听了似的,开玩笑) 导致了学习链表的时候各种卧槽. * ...
- TypeScript学习指南--目录索引
关于TypeScript: TypeScript是一种由微软开发的自由和开源的编程语言.它是JavaScript的一个超集,而且本质上向这个语言添加了可选的静态类型和基于类的面向对象编程. TypeS ...
- appcache checking update
<!DOCTYPE html> <html manifest="a.appcache"> <head> <title></ti ...
- 用原生JavaScript实现图片瀑布流的浏览效果
学习JS,活跃思维,灵活运用的一个较为典型的学习案例.同一个瀑布流的效果但实现方式却很多,利用递归.冒泡等等手法都可以达到你想要的目的.这次要说的就是利用类似递归来实现此效果的原创方案.此方案个人认为 ...
- python 常用模块(转载)
转载地址:http://codeweblog.com/python-%e5%b8%b8%e7%94%a8%e6%a8%a1%e5%9d%97/ adodb:我们领导推荐的数据库连接组件bsddb3:B ...
- ubuntu下的文本查看相关命令
文本查看 1.cat命令(查看文本内容) 使用时三种常用模式 (1)cat 文本名 直接查看文本内容 (2)cat 文本名 -n 直接查看文本内容,但为文本中所有行编号 (3)cat 文本名 -b 直 ...
- 随机产生字母a--z, A-Z 的任意组合
VERSION 1.0 引自: http://www.coderanch.com/t/134491/Security/generating-secure-tokens package demo; ...