在学习cnn的过程中,对convolution的概念真的很是模糊,本来在学习图像处理的过程中,已对convolution有所了解,它与correlation是有不同的,因为convolution = correlation + filp over in both horizontal + vertical

但在CNN中,明明只是进行了correlation,但却称之为convolution,实在不解

下面, 将图像处理中的convolution重新整理记录

因为网络关于这部分的解释很多,这里直接借用其他 参考

“A convolution is done by multiplying a pixel's and its neighboring pixels color value by a matrix”, 这里的matrix就是convoluiton kernel (usually a small matrix of numbers)

这里假设图像是3*3,kernel也是3*3,实际计算中,有时为了使得卷积结果与原图像一致,会对原图像进行padding操作

原图像x:

0 0 0 0 0
0 1 2 3 0
0 4 5 6 0
0 7 8 9 0
0 0 0 0 0
x(0,0) x(0,1) x(0,2) x(0,3) x(0,4)
x(1,0) x(1,1) x(1,2) x(1,3) x(1,4)
x(2,0) x(2,1) x(2,2) x(2,3) x(2,4)
x(3,0) x(3,1) x(3,2)  x(3,3) x(3,4)
x(4,0) x(4,1) x(4,2) x(4,3) x(4,4)

卷积核h:

-1 -2 -1
0 0 0
1 2 1
h(1,1) h(1,2) h(1,3)
h(2,1) h(2,2) h(2,3)
h(3,1) h(3,2) h(3,3)

具体的过程为:

将h先上下翻转,再左右翻转,然后,与x进行correlation运算

1 2 1
0 0 0
-1 -2 -1
h(3,3) h(3,2) h(3,1)
h(2,3) h(2,2) h(2,1)
h(1,1) h(1,2) h(1,1)

输出结果y:3*3

x(0,0) x(0,1) x(0,2) x(0,3) x(0,4)
x(1,0) x(1,1) x(1,2) x(1,3) x(1,4)
x(2,0) x(2,1) x(2,2) x(2,3) x(2,4)
x(3,0) x(3,1) x(3,2)  x(3,3) x(3,4)
x(4,0) x(4,1) x(4,2) x(4,3) x(4,4)

依次覆盖,对应元素相乘

h(3,3) h(3,2) h(3,1)
h(2,3) h(2,2) h(2,1)
h(1,1) h(1,2) h(1,1)

y(1,1) = h(3,3) *x(0,0) + h(3,2) *x(0,1) + h(3,1) *x(0,2) +

     h(2,3) *x(1,0) + h(2,2) *x(1,1) + h(2,1) *x(1,2) +

     h(1,3) *x(2,0) + h(1,2) *x(2,1) + h(1,1) *x(2,2)  

其他元素类似

:In image processing, a kernelconvolution matrix, or mask is a small matrix useful for blurring, sharpening, embossing, edge-detection, and more. This is accomplished by means of convolution between a kernel and an image.

2D image convolution的更多相关文章

  1. Understanding Convolution in Deep Learning

    Understanding Convolution in Deep Learning Convolution is probably the most important concept in dee ...

  2. 转置卷积Transposed Convolution

    转置卷积Transposed Convolution 我们为卷积神经网络引入的层,包括卷积层和池层,通常会减小输入的宽度和高度,或者保持不变.然而,语义分割和生成对抗网络等应用程序需要预测每个像素的值 ...

  3. TensorflowTutorial_二维数据构造简单CNN

    使用二维数据构造简单卷积神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 图像和一些时序数据集都可以用二维数据的形式表现,我们此次使用随机分布的二位数据构造一个简单的CNN-网络卷积- ...

  4. Intel DAAL AI加速——神经网络

    # file: neural_net_dense_batch.py #================================================================= ...

  5. tensorflow: a Implementation of rotation ops (旋转的函数实现方法)

    tensorflow 旋转矩阵的函数实现方法 关键字: rot90, tensorflow 1. 背景 在做数据增强的操作过程中, 很多情况需要对图像旋转和平移等操作, 针对一些特殊的卷积(garbo ...

  6. gdc skin

    https://www.gdcvault.com/play/1024410/Achieving-High-Quality-Low-Cost 这篇是教美术怎么用做地形那种方法 复用贴图 做skin的 做 ...

  7. Winograd Convolution 推导 - 从1D到2D

    Winograd Convolution 推导 - 从1D到2D 姚伟峰 http://www.cnblogs.com/Matrix_Yao/ Winograd Convolution 推导 - 从1 ...

  8. Deep Learning 10_深度学习UFLDL教程:Convolution and Pooling_exercise(斯坦福大学深度学习教程)

    前言 理论知识:UFLDL教程和http://www.cnblogs.com/tornadomeet/archive/2013/04/09/3009830.html 实验环境:win7, matlab ...

  9. Deep Learning 学习随记(七)Convolution and Pooling --卷积和池化

    图像大小与参数个数: 前面几章都是针对小图像块处理的,这一章则是针对大图像进行处理的.两者在这的区别还是很明显的,小图像(如8*8,MINIST的28*28)可以采用全连接的方式(即输入层和隐含层直接 ...

随机推荐

  1. OPTIMIZE TABLE

    INNODB 不支持 mysql> OPTIMIZE TABLE t; +--------+----------+----------+----------------------------- ...

  2. 动作之CCActionInstant(立即动作)家族

    立即动作就是不需要时间,马上就完成的动作.立即动作的共同基类是CCActionInstant.CCActionInstant的常用子类有: CCCallFunc:回调函数包装器 CCFlipX:X轴翻 ...

  3. 使用HttpURLConnection实现在android客户端和服务器之间传递对象

    一般情况下,客户端和服务端的数据交互都是使用json和XML,相比于XML,json更加轻量级,并且省流量,但是,无论我们用json还是用xml,都需要我们先将数据封装成json字符串或者是一个xml ...

  4. C#基础篇02

    首先:一个完整的方法是包括两部分的,代码和注释!!!! 程序的调试: 3:设置断点:  断点之前的程序已经确保正确,可是在断点后的部分可能出现错误,所以设置完断点后,直接点击启动,然后按F11逐步棸的 ...

  5. jquery杂记之checkbox控制select置灰

    jquery: $(function(){ $("#avg_day_live").bind("click",function(){   //点击 if($(&q ...

  6. oracle定时备份

    1.将如下代码复制到文本中,最后将文本后缀名称修改成XXX.bat 批处理文件: *********************************************************** ...

  7. android中相关的图形类

    Bitmap - 称作位图,一般位图的文件格式后缀为bmp,当然编码器也有很多如RGB565.RGB888.作为一种逐像素的显示对象执行效率高,但是缺点也很明显存储效率低.我们理解为一种存储对象比较好 ...

  8. 动态加载js、css 代码

    一.原生js: /** * 加载js和css文件 * @param jsonData.path 前缀路径 * @param jsonData.url 需要加载的js路径或css路径 * @param ...

  9. 坑爹CF April Fools Day Contest题解

    H - A + B Strikes Back A + B is often used as an example of the easiest problem possible to show som ...

  10. layerX && layerY

    转载:https://developer.mozilla.org/en-US/docs/Web/API/UIEvent/layerX UIEvent.layerX 非标准 这个属性是非标准的属性,并且 ...