[BZOJ 1006] [HNOI2008] 神奇的国度 【弦图最小染色】
题目链接: BZOJ - 1006
题目分析
这道题是一个弦图最小染色数的裸的模型。
弦图的最小染色求法,先求出弦图的完美消除序列(MCS算法),再按照完美消除序列,从后向前倒着,给每个点染能染的最小颜色。
求出的颜色数就是最小染色,同时也是最大团。
代码
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <queue> using namespace std; const int MaxN = 10000 + 5, MaxM = 1000000 + 5; int n, m, Ans;
int V[MaxN], A[MaxN], Col[MaxN], Used[MaxN]; bool Visit[MaxN]; struct Edge
{
int v;
Edge *Next;
} E[MaxM * 2], *P = E, *Point[MaxN]; inline void AddEdge(int x, int y)
{
++P; P -> v = y;
P -> Next = Point[x]; Point[x] = P;
} struct ES
{
int p, q;
ES() {}
ES(int a, int b)
{
p = a; q = b;
}
}; struct Cmp
{
bool operator () (ES e1, ES e2)
{
return e1.q < e2.q;
}
}; priority_queue<ES, vector<ES>, Cmp> Q; //MCS 求完美消除序列
void MCS()
{
for (int i = 1; i <= n; ++i)
{
V[i] = 0;
Visit[i] = false;
}
while (!Q.empty()) Q.pop();
Q.push(ES(1, 0));
int x, y;
for (int i = n; i >= 1; --i)
{
while (true)
{
x = Q.top().p; Q.pop();
if (!Visit[x]) break;
}
A[i] = x;
Visit[x] = true;
for (Edge *j = Point[x]; j; j = j -> Next)
{
y = j -> v;
if (Visit[y]) continue;
++V[y];
Q.push(ES(y, V[y]));
}
}
} void Min_Paint()
{
Ans = 1;
int x;
memset(Col, 0, sizeof(Col));
memset(Used, 0, sizeof(Used));
for (int i = n; i >= 1; --i)
{
for (Edge *j = Point[A[i]]; j; j = j -> Next)
Used[Col[j -> v]] = i;
x = 1;
while (Used[x] == i)
{
++x;
if (x > Ans) Ans = x;
}
Col[A[i]] = x;
}
} int main()
{
scanf("%d%d", &n, &m);
int a, b;
for (int i = 1; i <= m; ++i)
{
scanf("%d%d", &a, &b);
AddEdge(a, b);
AddEdge(b, a);
}
MCS();
Min_Paint();
printf("%d\n", Ans);
return 0;
}
[BZOJ 1006] [HNOI2008] 神奇的国度 【弦图最小染色】的更多相关文章
- ●BZOJ 1006 [HNOI2008]神奇的国度(弦图最小染色数)○ZOJ 1015 Fishing Net
●赘述题目 给出一张弦图,求其最小染色数. ●题解 网上的唯一“文献”:<弦图与区间图>(cdq),可以学习学习.(有的看不懂) 摘录几个解决改题所需的知识点: ●子图和诱导子图(一定要弄 ...
- bzoj 1006: [HNOI2008]神奇的国度 弦图的染色问题&&弦图的完美消除序列
1006: [HNOI2008]神奇的国度 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 1788 Solved: 775[Submit][Stat ...
- bzoj 1006: [HNOI2008]神奇的国度 -- 弦图(最大势算法)
1006: [HNOI2008]神奇的国度 Time Limit: 20 Sec Memory Limit: 162 MB Description K国是一个热衷三角形的国度,连人的交往也只喜欢三角 ...
- bzoj 1006 [HNOI2008]神奇的国度 弦图+完美消除序列+最大势算法
[HNOI2008]神奇的国度 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 4370 Solved: 2041[Submit][Status][D ...
- BZOJ 1006: [HNOI2008]神奇的国度(弦图)
传送门 解题思路 弦图就是图中任意一个大小\(>=4\)的环至少存在一条两个节点不相邻的边,这样的图称为弦图,弦图有许多优美的性质.一个无向图是弦图当且仅当它有一个完美消除序列,完美消除序列就是 ...
- [bzoj1006](HNOI2008)神奇的国度(弦图最小染色)【太难不会】
Description K国是一个热衷三角形的国度,连人的交往也只喜欢三角原则. 他们认为三角关系:即AB相互认识,BC相互认识,CA相互认识,是简洁高效的.为了巩固三角关系,K国禁止四边关系,五边关 ...
- 【BZOJ】1006: [HNOI2008]神奇的国度 弦图消除完美序列问题
1006: [HNOI2008]神奇的国度 Description K国是一个热衷三角形的国度,连人的交往也只喜欢三角原则. 他们认为三角关系:即AB相互认识,BC相互认识,CA相互认识,是简洁高效的 ...
- BZOJ 1006 [HNOI2008] 神奇的国度(简单弦图的染色)
题目大意 K 国是一个热衷三角形的国度,连人的交往也只喜欢三角原则.他们认为三角关系:即 AB 相互认识,BC 相互认识,CA 相互认识,是简洁高效的.为了巩固三角关系,K 国禁止四边关系,五边关系等 ...
- BZOJ 1006: [HNOI2008]神奇的国度( MCS )
弦图最小染色...先用MCS求出完美消除序列然后再暴力染色... ------------------------------------------------------------------- ...
随机推荐
- springMVC3学习(八)--全球异常处理
在springMVC在配置文件: <bean id="exceptionResolver" class="org.springframework.web.servl ...
- bash if 表达式
.bash把[[ $a -lt $b ]]看作一个单独的元素,并且返回一个退出码.退出码0为真,非零为假 例如: a= b=c [[ $a -lt $b ]] echo $? # a小于b为真 [[ ...
- 打开PPT 提示安装,非要取消才能显示PPT
自从安装VS2008后,一打开ppt文件,就开始了配置VS2008的过程. 配置完了,下回也还提示安装. 解决方案: PowerPoint选项->加载项->Chinese Translat ...
- NDK开发之ndk-build命令详解
毫无疑问,通过执行ndk-build脚本启动android ndk构建系统. 默认情况下,ndk-build脚本在工程的主目录中执行,如: 我们可以用使用-C参数改变上述行为,-C指定工程的目录,这样 ...
- android开发必备日志打印工具类
今天给大家献上一款好用的日志打印工具.大家在平时的开发中用的最多的可能就是Log.i("",""),Log.e("","" ...
- ubuntu 下编译安装 mysql php nginx 及常见错误 (持续添加)
mysql mysql 可以使用mysql 官方提供的apt源进行安装 参见这里 php 安装前先安装一些常见库 sudo apt-get install libpng16-16 libpng16-d ...
- ubuntu 14.04 编译安装 nginx
下载源码包 nginx 地址:http://nginx.org/en/download.html 下载nginx 1.4.7 编译前先安装两个包: 直接编译安装会碰到缺少pcre等问题,这时候只要到 ...
- 配置SSH免密码验证
为了防止无良网站的爬虫抓取文章,特此标识,转载请注明文章出处.LaplaceDemon/ShiJiaqi. http://www.cnblogs.com/shijiaqi1066/p/5183803. ...
- RMQ问题与ST算法
RMQ(Range Minimum/Maximum Query)问题是求区间最值问题. 对于长度为 n 的数组 A,进行若干次查询,对于区间 [L,R] 返回数组A中下标在 [L,R] 中的最小(大) ...
- javascript通过字典思想操作数据
作为一名前端程序猿,相对于后端操作数据的机会较少.然而,有些时候因为一些特殊的原因(如:需要构造成对应插件需要的数据格式,需要返回特定的数据格式等)而不得不对数据进行筛选.重构.相对于后端语言,我们没 ...