前言

蒟蒻代码惨遭卡常,根本跑不过

前置芝士——单位根反演

单位根有这样的性质:

\[\frac{1}{n}\sum_{i=0}^{n-1}\omega_{n}^{ki}=\left[n|k\right]
\]

所以可以得出单位根反演的式子

如果有\(f(x)=\sum_{i=0}a_ix^i\),就可以推出

\[\sum_{i=0}^na_i\left[d|i\right]=\frac{1}{d}\sum_{p=0}^{d-1}f(\omega_d^p)
\]

证明可以把上面的式子代入,然后交换和号

思路

这道题要求的东西是这样的

\[\sum_{i=0}^3a_i\sum_{j=0}^n\left(\begin{matrix}n\\j\end{matrix}\right)s^j\left[j\%4=i\right]
\]

写出\(\sum_{j=0}^n\left(\begin{matrix}n\\j\end{matrix}\right)s^j\)的生成函数,由二项式定理得到是\((sx+1)^n\)

不妨设i=0

则要求

\[\sum_{j=0}^n\left(\begin{matrix}n\\j\end{matrix}\right)s^j\left[4|j\right]
\]

直接套公式

原式等于

\[\frac{1}{4}\sum_{p=0}^3f(\omega_4^p)
\]

对于i等于1,2,3,相当于原式向右边“移动”了1,2,3个位置

乘以自变量的对应倍即可

代码

蒟蒻的代码不知道为什么跑的辣么慢,只有60pts

#include <cstdio>
#include <algorithm>
#include <cstring>
#define int long long
using namespace std;
int T,a[4],s,n,MOD=998244353,W[5]={1,911660635,998244352,86583718},inv=748683265;
int pow(int a,int b){
int ans=1;
while(b){
if(b&1)
ans=(ans*a)%MOD;
a=(a*a)%MOD;
b>>=1;
}
return ans;
}
signed main(){
scanf("%lld",&T);
while(T--){
scanf("%lld %lld %lld %lld %lld %lld",&n,&s,&a[0],&a[1],&a[2],&a[3]);
int ans=0;
for(int i=0;i<4;i++){
int mid=0;
for(int j=0;j<4;j++)
mid=(mid+pow((s*W[j]%MOD+1%MOD)%MOD,n)*pow(W[i*j%4],MOD-2)%MOD)%MOD;
ans=(ans+a[i]*mid%MOD*inv%MOD)%MOD;
}
printf("%lld\n",ans);
}
return 0;
}

LOJ 6485 LJJ学多项式的更多相关文章

  1. loj #6485. LJJ 学二项式定理 (模板qwq)

    $ \color{#0066ff}{ 题目描述 }$ LJJ 学完了二项式定理,发现这太简单了,于是他将二项式定理等号右边的式子修改了一下,代入了一定的值,并算出了答案. 但人口算毕竟会失误,他请来了 ...

  2. LOJ #6485 LJJ 学二项式定理

    QwQ LOJ #6485 题意 求题面中那个算式 题解 墙上暴利 设$ f(x)=(sx+1)^n$ 假设求出了生成函数$ f$的各项系数显然可以算出答案 因为模$ 4$的缘故只要对于每个余数算出次 ...

  3. LOJ 6485 LJJ 学二项式定理——单位根反演

    题目:https://loj.ac/problem/6485 \( \sum\limits_{k=0}^{3}\sum\limits_{i=0}^{n}C_{n}^{i}s^{i}a_{k}[4|(i ...

  4. loj 6485 LJJ学二项式定理 —— 单位根反演

    题目:https://loj.ac/problem/6485 先把 \( a_{i mod 4} \) 处理掉,其实就是 \( \sum\limits_{i=0}^{3} a_{i} \sum\lim ...

  5. loj#6485. LJJ 学二项式定理(单位根反演)

    题面 传送门 题解 首先你要知道一个叫做单位根反演的东西 \[{1\over k}\sum_{i=0}^{k-1}\omega^{in}_k=[k|n]\] 直接用等比数列求和就可以证明了 而且在模\ ...

  6. loj #6485. LJJ 学二项式定理 单位根反演

    新学的黑科技,感觉好nb ~ #include <bits/stdc++.h> #define ll long long #define setIO(s) freopen(s". ...

  7. [LOJ 6485]LJJ学二项式定理(单位根反演)

    也许更好的阅读体验 \(\mathcal{Description}\) 原题链接 \(T\)组询问,每次给\(n,s,a_0,a_1,a_2,a_3\)求 \(\begin{aligned}\left ...

  8. 【LOJ#6485】LJJ 学二项式定理(单位根反演)

    [LOJ#6485]LJJ 学二项式定理(单位根反演) 题面 LOJ 题解 显然对于\(a0,a1,a2,a3\)分开算答案. 这里以\(a0\)为例 \[\begin{aligned} Ans&am ...

  9. LOJ6485 LJJ 学二项式定理 解题报告

    LJJ 学二项式定理 题意 \(T\)组数据,每组给定\(n,s,a_0,a_1,a_2,a_3\),求 \[ \sum_{i=0}^n \binom{n}{i}s^ia_{i\bmod 4} \] ...

随机推荐

  1. 解释器模式 Interpreter

    代码例子 参考 1.解释器模式定义 给定一个语言,定义它的文法的一种表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子. 说明:解释器模式设计到文法规则和抽象语法树. 2.解释器模式的结构 ...

  2. python: ImportError: cannot import name 'Style' from 'openpyxl.styles' 解决方法

    import os, openpyxl from openpyxl.styles import Font, Style os.chdir("C:\\") wb = openpyxl ...

  3. python 数据序列化(json、pickle、shelve)

    本来要查一下json系列化自定义对象的一个问题,然后发现这篇博客(https://www.cnblogs.com/yyds/p/6563608.html)很全面,感谢作者,关于python序列化的知识 ...

  4. golang学习笔记14 golang substring 截取字符串

    golang学习笔记14 golang substring 截取字符串golang 没有java那样的substring函数,但支持直接根据 index 截取字符串mystr := "hel ...

  5. localstorage跨域解决方案

    localstorage也存在 跨域的问题, [解决思路如下] 在A域和B域下引入C域,所有的读写都由C域来完成,本地数据存在C域下; 因此 A哉和B域的页面必定要引入C域的页面; 当然C域最好是主域 ...

  6. [转载] 关于出现“使用 UNION、INTERSECT 或 EXCEPT 运算符合并的所有查询必须在其目标列表中有相同数目的表达式”错误的可能原因

    1. 对于该问题确实存在UNION前后SELECT语句中的列数不同导致:2. 以下为个人遇到的一种可能:在项目开发中由于有张表是动态的,即有个基础表,其他的表按年月根据基础表来生成动态表,动态表结构和 ...

  7. 自学Java第一周的总结

    在第一周里我花费了不少时间配置jdk的环境变量,并学习了有关java的基本知识,了解了Java中的变量.数据类型以及运算符.我知道了什么是变量并且如何去定义变量,也学会了如何去使用运算符以及对数据类型 ...

  8. c# out ref parames的用法

    out ref parames的用法(将值传递转换成引用传递) Out 一般用于返回多个值,在方法体中会清空out变量,侧重于一个方法有多个返回值得时候使用 Ref有进有出,可以在方法体外必须赋初值, ...

  9. 获取select被选中的option的值

    <select id="select">      <option>绥江</option>      <option>西江</ ...

  10. 【移动端】js禁止页面滑动与允许滑动

    禁止页面滑动 通常静止滑动方案:(阻止滑动事件) window.ontouchmove=function(e){ e.preventDefault && e.preventDefaul ...