T1 谈笑风生

【题目描述】

【输入】

【输出】

一行两个数,所需能量P与在能量最小的前提下最短的到达时间t。

【样例输入】

5 7 66
4 3 2 1 5
1 2
1 5
2 3
2 4
2 5
3 4
3 5

【样例输出】

6 64

【数据范围限制】

【样例解释】

从城市1出发,花费6单位能量,依次经过2、4、3、到达首都5,花费32+3+0+29=64秒

Solution

边权计算规则
\[
w=\sum_{i=1}^{num[u]}\sum_{j=1}^{num[v]}(i+j)[(i,j)=1]
\]

\[
\begin{aligned}
&设sum(n,m)=\sum_{i=1}^{n}\sum_{j=1}^{m}(i+j)\\
w&=\sum_{i=1}^{num[u]}\sum_{j=1}^{num[v]}(i+j)[(i,j)=1]\\
&=\sum_{i=1}^{num[u]}\sum_{j=1}^{num[v]}(i+j)\sum_{k|(i,j)}\mu(k)\\
&=\sum_{k=1}^{min(num[u],num[v])}k\mu(k) \sum_{i=1}^{\lfloor\frac{num[u]}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{num[v]}{k}\rfloor}(i+j)\\
&=\sum_{k=1}^{min(num[u],num[v])}k*\mu(k)*sum(\lfloor\frac{num[u]}{k}\rfloor,\lfloor\frac{num[v]}{k}\rfloor)
\end{aligned}
\]

易得
\[
\begin{aligned}
sum(n,m)&=\sum_{i=1}^{n}\sum_{j=1}^{m}(i+j)\\
&=\frac{nm(n+m+2)}{2}
\end{aligned}
\]
所以可以\(m\sqrt{max(num[i])}\)的计算出每条边的边权

然后二分答案+spfa计算即可。

因为JZOJ不开放注册。。。所以就没办法交了,口胡一波,题面还是网上找来的。。。

不过思路是对的。好像GDOI2018我也就两道T1会写T_T

GDOI2018D2T1 谈笑风生的更多相关文章

  1. 【BZOJ-3653】谈笑风生 DFS序 + 可持久化线段树

    3653: 谈笑风生 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 628  Solved: 245[Submit][Status][Discuss] ...

  2. BZOJ3653: 谈笑风生

    Description 设T 为一棵有根树,我们做如下的定义:• 设a和b为T 中的两个不同节点.如果a是b的祖先,那么称“a比b不知道高明到哪里去了”.• 设a 和 b 为 T 中的两个不同节点.如 ...

  3. 老码农教你在 StackOverflow 上谈笑风生

    作为一个高大上的码农,你肯定用到过 StackOverflow,必须的.会有人否定这个断言么?那他恐怕不是真正的码农,或者说还没入门.StackOverflow 对于码农的重要性,基本就和诸葛亮对刘备 ...

  4. 数据结构(主席树):COGS 2211. 谈笑风生

    2211. 谈笑风生 ★★★★   输入文件:laugh.in   输出文件:laugh.out   简单对比时间限制:3 s   内存限制:512 MB [问题描述] 设T 为一棵有根树,我们做如下 ...

  5. 【NOI模拟】谈笑风生(主席树)

    题目描述 设 T 为一棵有根树,我们做如下的定义: 设 a 和 b 为 T 中的两个不同节点.如果 a 是 b 的祖先,那么称 “ a 比 b 不知道高明到哪里去了 ” . 设 a 和 b 为 T 中 ...

  6. bzoj 3653 [湖南集训]谈笑风生

    题目描述 设 T 为一棵有根树,我们做如下的定义: • 设 a 和 b 为 T 中的两个不同节点.如果 a 是 b 的祖先,那么称"a 比 b 不知道高明到哪里去了". • 设 a ...

  7. BZOJ_3653_谈笑风生_树状数组

    BZOJ_3653_谈笑风生_树状数组 Description 设T 为一棵有根树,我们做如下的定义: ? 设a和b为T 中的两个不同节点.如果a是b的祖先,那么称“a比b不知道 高明到哪里去了”. ...

  8. 【BZOJ3653】谈笑风生(长链剖分)

    [BZOJ3653]谈笑风生(长链剖分) 题面 BZOJ 洛谷 权限题啊.... 题解 首先根据题目给的条件,发现\(a,b\)都要是\(c\)的父亲. 所以这三个点是树上的一条深度单增的链. 因为\ ...

  9. luogu P3899 [湖南集训]谈笑风生

    传送门 nmyzd,mgdhls,bnmbzdgdnlql,a,wgttxfs 对于一个点\(a\),点\(b\)只有可能是他的祖先或者在\(a\)子树里 如果点\(b\)是\(a\)祖先,那么答案为 ...

随机推荐

  1. linux常见运维题

    linux运维题 一.填空题 1. 在Linux 系统 中,以文件方式访问设备 . (linux下一切都是文件) 2. Linux 内核引导时,从文件/etc/fstab中读取要加载的文件系统 . ( ...

  2. Spark学习之路 (三)Spark之RDD

    一.RDD的概述 1.1 什么是RDD? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素 ...

  3. 仿照admin的stark自定义组件的功能实现

    仿照admin的stark自定义组件的功能实现:其中最主要的就是增删改查的实现 1.查:首先页面中显示表头和数据,都是动态的,而不是写死的. (1) 先看表头和表单数据:这个是查看的视图函数,但是为了 ...

  4. Eclipse创建maven工程后没有build path解决方案

    1.修改maven工程下的.project文件为如下内容 <?xml version="1.0" encoding="UTF-8"?> <pr ...

  5. springboot用@Autowired和@PostConstruct注解把config配置读取到bean变成静态方法

    springboot用@Autowired和@PostConstruct注解把config配置读取到bean变成静态方法 @SpringBootApplication public class Sen ...

  6. windows.onload和body的onload属性的区别

    关于windows.onload和body的onload属性的区别网上有些说法说的也不太统一,现在系统说下: 先看共同点: 都是body内容体加载结束执行: window.onload 内部方式可以 ...

  7. javanio1----传统io

    import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import ...

  8. <转>jmeter(二)录制脚本

    本博客转载自:http://www.cnblogs.com/imyalost/category/846346.html 个人感觉不错,对jmeter讲解非常详细,担心以后找不到了,所以转发出来,留着慢 ...

  9. windows与linux ping 显示的ip不一样

    DNS修改了一下域名对应的IP后,域名不能访问了,我在windows下ping一下域名,IP没有变过来,还是老的IP.我在linux下又ping了一下域名,是换过了的.这个问题是由windows下的本 ...

  10. 清明 DAY2

    数论 数论是研究整数性质的东西 也就是 lim   π(x)=x/ ln x (x->无穷) 证明: ∵ p|ab ∴ ab有因子p 设 a=p1k1p2k2......prkr      b= ...