Kafka:ZK+Kafka+Spark Streaming集群环境搭建(三十):使用flatMapGroupsWithState替换agg
flatMapGroupsWithState的出现解决了什么问题:
flatMapGroupsWithState的出现在spark structured streaming原因(从spark.2.2.0开始才开始支持):
1)可以实现agg函数;
2)就目前最新spark2.3.2版本来说在spark structured streming中依然不支持对dataset多次agg操作
,而flatMapGroupsWithState可以替代agg的作用,同时它允许在sink为append模式下在agg之前使用。
注意:尽管允许agg之前使用,但前提是:输出(sink)方式Append方式。
flatMapGroupsWithState的使用示例(从网上找到):
参考:《https://jaceklaskowski.gitbooks.io/spark-structured-streaming/spark-sql-streaming-KeyValueGroupedDataset-flatMapGroupsWithState.html》
说明:以下示例代码实现了“select deviceId,count(0) as count from tbName group by deviceId.”。
1)spark2.3.0版本下定义一个Signal实体类:
- scala> spark.version
- res0: String = 2.3.0-SNAPSHOT
- import java.sql.Timestamp
- type DeviceId = Int
- case class Signal(timestamp: java.sql.Timestamp, value: Long, deviceId: DeviceId)
2)使用Rate source方式生成一些测试数据(随机实时流方式),并查看执行计划:
- // input stream
- import org.apache.spark.sql.functions._
- val signals = spark.
- readStream.
- format("rate").
- option("rowsPerSecond", 1).
- load.
- withColumn("value", $"value" % 10). // <-- randomize the values (just for fun)
- withColumn("deviceId", rint(rand() * 10) cast "int"). // <-- 10 devices randomly assigned to values
- as[Signal] // <-- convert to our type (from "unpleasant" Row)
- scala> signals.explain
- == Physical Plan ==
- *Project [timestamp#0, (value#1L % 10) AS value#5L, cast(ROUND((rand(4440296395341152993) * 10.0)) as int) AS deviceId#9]
- +- StreamingRelation rate, [timestamp#0, value#1L]
3)对Rate source流对象进行groupBy,使用flatMapGroupsWithState实现agg
- // stream processing using flatMapGroupsWithState operator
- val device: Signal => DeviceId = { case Signal(_, _, deviceId) => deviceId }
- val signalsByDevice = signals.groupByKey(device)
- import org.apache.spark.sql.streaming.GroupState
- type Key = Int
- type Count = Long
- type State = Map[Key, Count]
- case class EventsCounted(deviceId: DeviceId, count: Long)
- def countValuesPerKey(deviceId: Int, signalsPerDevice: Iterator[Signal], state: GroupState[State]): Iterator[EventsCounted] = {
- val values = signalsPerDevice.toList
- println(s"Device: $deviceId")
- println(s"Signals (${values.size}):")
- values.zipWithIndex.foreach { case (v, idx) => println(s"$idx. $v") }
- println(s"State: $state")
- // update the state with the count of elements for the key
- val initialState: State = Map(deviceId -> 0)
- val oldState = state.getOption.getOrElse(initialState)
- // the name to highlight that the state is for the key only
- val newValue = oldState(deviceId) + values.size
- val newState = Map(deviceId -> newValue)
- state.update(newState)
- // you must not return as it's already consumed
- // that leads to a very subtle error where no elements are in an iterator
- // iterators are one-pass data structures
- Iterator(EventsCounted(deviceId, newValue))
- }
- import org.apache.spark.sql.streaming.{GroupStateTimeout, OutputMode}
- val signalCounter = signalsByDevice.flatMapGroupsWithState(
- outputMode = OutputMode.Append,
- timeoutConf = GroupStateTimeout.NoTimeout)(func = countValuesPerKey)
4)使用Console Sink方式打印agg结果:
- import org.apache.spark.sql.streaming.{OutputMode, Trigger}
- import scala.concurrent.duration._
- val sq = signalCounter.
- writeStream.
- format("console").
- option("truncate", false).
- trigger(Trigger.ProcessingTime(10.seconds)).
- outputMode(OutputMode.Append).
- start
5)console print
- ...
- -------------------------------------------
- Batch:
- -------------------------------------------
- +--------+-----+
- |deviceId|count|
- +--------+-----+
- +--------+-----+
- ...
- // :: INFO StreamExecution: Streaming query made progress: {
- "id" : "a43822a6-500b-4f02-9133-53e9d39eedbf",
- "runId" : "79cb037e-0f28-4faf-a03e-2572b4301afe",
- "name" : null,
- "timestamp" : "2017-08-21T06:57:26.719Z",
- "batchId" : ,
- "numInputRows" : ,
- "processedRowsPerSecond" : 0.0,
- "durationMs" : {
- "addBatch" : ,
- "getBatch" : ,
- "getOffset" : ,
- "queryPlanning" : ,
- "triggerExecution" : ,
- "walCommit" :
- },
- "stateOperators" : [ {
- "numRowsTotal" : ,
- "numRowsUpdated" : ,
- "memoryUsedBytes" :
- } ],
- "sources" : [ {
- "description" : "RateSource[rowsPerSecond=1, rampUpTimeSeconds=0, numPartitions=8]",
- "startOffset" : null,
- "endOffset" : ,
- "numInputRows" : ,
- "processedRowsPerSecond" : 0.0
- } ],
- "sink" : {
- "description" : "ConsoleSink[numRows=20, truncate=false]"
- }
- }
- // :: DEBUG StreamExecution: batch committed
- ...
- -------------------------------------------
- Batch:
- -------------------------------------------
- Device:
- Signals ():
- . Signal(-- ::27.682,,)
- State: GroupState(<undefined>)
- Device:
- Signals ():
- . Signal(-- ::26.682,,)
- State: GroupState(<undefined>)
- Device:
- Signals ():
- . Signal(-- ::28.682,,)
- State: GroupState(<undefined>)
- +--------+-----+
- |deviceId|count|
- +--------+-----+
- | | |
- | | |
- | | |
- +--------+-----+
- ...
- // :: INFO StreamExecution: Streaming query made progress: {
- "id" : "a43822a6-500b-4f02-9133-53e9d39eedbf",
- "runId" : "79cb037e-0f28-4faf-a03e-2572b4301afe",
- "name" : null,
- "timestamp" : "2017-08-21T06:57:30.004Z",
- "batchId" : ,
- "numInputRows" : ,
- "inputRowsPerSecond" : 0.91324200913242,
- "processedRowsPerSecond" : 2.2388059701492535,
- "durationMs" : {
- "addBatch" : ,
- "getBatch" : ,
- "getOffset" : ,
- "queryPlanning" : ,
- "triggerExecution" : ,
- "walCommit" :
- },
- "stateOperators" : [ {
- "numRowsTotal" : ,
- "numRowsUpdated" : ,
- "memoryUsedBytes" :
- } ],
- "sources" : [ {
- "description" : "RateSource[rowsPerSecond=1, rampUpTimeSeconds=0, numPartitions=8]",
- "startOffset" : ,
- "endOffset" : ,
- "numInputRows" : ,
- "inputRowsPerSecond" : 0.91324200913242,
- "processedRowsPerSecond" : 2.2388059701492535
- } ],
- "sink" : {
- "description" : "ConsoleSink[numRows=20, truncate=false]"
- }
- }
- // :: DEBUG StreamExecution: batch committed
- ...
- -------------------------------------------
- Batch:
- -------------------------------------------
- Device:
- Signals ():
- . Signal(-- ::36.682,,)
- State: GroupState(<undefined>)
- Device:
- Signals ():
- . Signal(-- ::32.682,,)
- . Signal(-- ::35.682,,)
- State: GroupState(Map( -> ))
- Device:
- Signals ():
- . Signal(-- ::34.682,,)
- State: GroupState(<undefined>)
- Device:
- Signals ():
- . Signal(-- ::29.682,,)
- State: GroupState(<undefined>)
- Device:
- Signals ():
- . Signal(-- ::31.682,,)
- . Signal(-- ::33.682,,)
- State: GroupState(Map( -> ))
- Device:
- Signals ():
- . Signal(-- ::30.682,,)
- . Signal(-- ::37.682,,)
- State: GroupState(Map( -> ))
- Device:
- Signals ():
- . Signal(-- ::38.682,,)
- State: GroupState(<undefined>)
- +--------+-----+
- |deviceId|count|
- +--------+-----+
- | | |
- | | |
- | | |
- | | |
- | | |
- | | |
- | | |
- +--------+-----+
- ...
- // :: INFO StreamExecution: Streaming query made progress: {
- "id" : "a43822a6-500b-4f02-9133-53e9d39eedbf",
- "runId" : "79cb037e-0f28-4faf-a03e-2572b4301afe",
- "name" : null,
- "timestamp" : "2017-08-21T06:57:40.005Z",
- "batchId" : ,
- "numInputRows" : ,
- "inputRowsPerSecond" : 0.9999000099990002,
- "processedRowsPerSecond" : 9.242144177449168,
- "durationMs" : {
- "addBatch" : ,
- "getBatch" : ,
- "getOffset" : ,
- "queryPlanning" : ,
- "triggerExecution" : ,
- "walCommit" :
- },
- "stateOperators" : [ {
- "numRowsTotal" : ,
- "numRowsUpdated" : ,
- "memoryUsedBytes" :
- } ],
- "sources" : [ {
- "description" : "RateSource[rowsPerSecond=1, rampUpTimeSeconds=0, numPartitions=8]",
- "startOffset" : ,
- "endOffset" : ,
- "numInputRows" : ,
- "inputRowsPerSecond" : 0.9999000099990002,
- "processedRowsPerSecond" : 9.242144177449168
- } ],
- "sink" : {
- "description" : "ConsoleSink[numRows=20, truncate=false]"
- }
- }
- // :: DEBUG StreamExecution: batch committed
- // In the end...
- sq.stop
- // Use stateOperators to access the stats
- scala> println(sq.lastProgress.stateOperators().prettyJson)
- {
- "numRowsTotal" : ,
- "numRowsUpdated" : ,
- "memoryUsedBytes" :
- }
Kafka:ZK+Kafka+Spark Streaming集群环境搭建(三十):使用flatMapGroupsWithState替换agg的更多相关文章
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十二)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网。
Centos7出现异常:Failed to start LSB: Bring up/down networking. 按照<Kafka:ZK+Kafka+Spark Streaming集群环境搭 ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十)安装hadoop2.9.0搭建HA
如何搭建配置centos虚拟机请参考<Kafka:ZK+Kafka+Spark Streaming集群环境搭建(一)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网.& ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十九)ES6.2.2 安装Ik中文分词器
注: elasticsearch 版本6.2.2 1)集群模式,则每个节点都需要安装ik分词,安装插件完毕后需要重启服务,创建mapping前如果有机器未安装分词,则可能该索引可能为RED,需要删除后 ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十五)Spark编写UDF、UDAF、Agg函数
Spark Sql提供了丰富的内置函数让开发者来使用,但实际开发业务场景可能很复杂,内置函数不能够满足业务需求,因此spark sql提供了可扩展的内置函数. UDF:是普通函数,输入一个或多个参数, ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十六)Structured Streaming中ForeachSink的用法
Structured Streaming默认支持的sink类型有File sink,Foreach sink,Console sink,Memory sink. ForeachWriter实现: 以写 ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十四)定义一个avro schema使用comsumer发送avro字符流,producer接受avro字符流并解析
参考<在Kafka中使用Avro编码消息:Consumer篇>.<在Kafka中使用Avro编码消息:Producter篇> 在了解如何avro发送到kafka,再从kafka ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十八)ES6.2.2 增删改查基本操作
#文档元数据 一个文档不仅仅包含它的数据 ,也包含 元数据 —— 有关 文档的信息. 三个必须的元数据元素如下:## _index 文档在哪存放 ## _type 文档表示的对象类别 ## ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十三)kafka+spark streaming打包好的程序提交时提示虚拟内存不足(Container is running beyond virtual memory limits. Current usage: 119.5 MB of 1 GB physical memory used; 2.2 GB of 2.1 G)
异常问题:Container is running beyond virtual memory limits. Current usage: 119.5 MB of 1 GB physical mem ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(九)安装kafka_2.11-1.1.0
如何搭建配置centos虚拟机请参考<Kafka:ZK+Kafka+Spark Streaming集群环境搭建(一)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网.& ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(八)安装zookeeper-3.4.12
如何搭建配置centos虚拟机请参考<Kafka:ZK+Kafka+Spark Streaming集群环境搭建(一)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网.& ...
随机推荐
- LeetCode(1):两数之和
写在前面:基本全部参考大神“Grandyang”的博客,附上网址:http://www.cnblogs.com/grandyang/p/4130379.html 写在这里,是为了做笔记,同时加深理解, ...
- java远程工具类
package com.zdz.httpclient; import java.io.BufferedReader; import java.io.IOException; import java.i ...
- windows10 更新后要输入2次密码才能进入系统
解决办法: 设置---账户---登录选项---隐私---更新或重启后,使用我的登录信息自动完成设备设置.(关闭)
- 如何将自己的Image镜像Push到Docker Hub
首先需要一个docker官方账号 这里我添加了一个AspNetCore程序 通过创建了一个镜像(前面提过使用Dockerfile处理了) docker build -t dockertest . 首先 ...
- DFS基础题
hdu 1241 油田 裸DFS 题意:@代表油田 8个方向上还有@就相连 相当于求图中连通子图的个数Sample Input1 1 // n m*3 5*@*@***@***@*@*1 8@@** ...
- Hibernate api 之常见的类(配置类,会话工厂类,会话类)
1:Configuration :配置管理类对象 1.1:config.configure(): 加载主配置文件的方法(hibernate.cfg.xml) ,默认加载src/hibernate.cf ...
- UOJ Round #1 题解
题解: 质量不错的一套题目啊..(题解也很不错啊) t1: 首先暴力显然有20分,把ai相同的缩在一起就有40分了 然后会发现由于原来的式子有个%很不方便处理 so计数题嘛 考虑一下容斥 最终步数=初 ...
- java:给你一个数组和两个索引,交换下标为这两个索引的数字
给你一个数组和两个索引,交换下标为这两个索引的数字 import java.util.Arrays; public class Solution { public static void main(S ...
- Codeforces Round #441(Div.2) F - High Cry
F - High Cry 题目大意:给你n个数,让你找区间里面所有数或 起来大于区间里面最大数的区间个数. 思路:反向思维,找出不符合的区间然后用总数减去.我们找出每个数掌控的最左端 和最右端,一个数 ...
- hdu 1251:统计难题[【trie树】||【map】
<题目链接> 统计难题 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131 ...