Python实例:申报项目查重系统设计与实现

作者:白宁超

2017年5月18日17:51:37

摘要:关于查重系统很多人并不陌生,无论本科还是硕博毕业都不可避免涉及论文查重问题,这也对学术不正之风起到一定纠正作用。单位主要针对科技项目申报审核,传统的方式人力物力比较大,且伴随季度性的繁重工作,效率不高。基于此,单位觉得开发一款可以达到实用的智能查重系统。遍及网络文献,终未得到有价值的参考资料,这个也是自然。首先类似知网,paperpass这样的商业公司其毕业申报专利并进行保密,其他科研单位因发展需要也不会开源。笔者就结合NLP相关知识进行设计一款自主的查重系统,首先采用自然语言处理方法主要提出两个模型:科技项目查重的训练模型和科技项目查重的测试模型。其中训练模型主要对数据的清洗预处理及其规约化处理,测试系统也是主查重系统,对其查重原理和性能进行设计实现。最后将其封装成包,PHP或者Java等语言调用即可。(本文原创编著,转载注明出处:Python实例:申报项目查重系统设计与实现

1 开发环境部署


硬件环境:普通台式机或者笔记本一台,可以正常连网,配置不作特别要求

软件环境:win7以上系统,本机采用WIN10 64位系统

开发环境:Sublime + Python3.5(Anaconda)

分词工具:先行的分词工具都可以,本文采用结巴分词

PHP调用环境:WampServer(php开发集成环境)

2 查重系统需要分析


背景:科技相关工作者通过计划项目管理平台进行项目申报,这个过程中存在涉嫌造假,修改本人以往项目等一系列违规操作。为了遏制这种现象,开发一款智能的项目查重系统必然不能或缺。

需求:低版本主要控制申报项目的标题和简介查重问题,实现对相似度较高的项目进行查重。用户提交申报项目后,自动审查是否存在违规行为。

解决:1 从服务器中导出今年真实的申报项目作为训练集(目前采用真实项目2400多个),通过对训练数据集的一系列数据清洗,然后进行语料库构建工作。2 采用文本相似度原理对测试文本进行建模,最后通过文本相似算法的实现,完成查重系统。3 PHP调用python查重文件,实现操作。

问题:1 真实语料规模有所限制,伴随语料扩大效果更好。2 文本相似度多种算法比较,包括:欧几里德距离、余弦定理、皮尔逊相关度、曼哈顿距离、Jaccard系数、gensim相似度等,改进版采用合适的相似度算法。3 对同义词、近义词、稀有词、核心词等权重问题的改进 4 后续改进针对整篇文章和主题识别

3 查重系统设计流程


本查重系统设计分为两大步骤:训练模型和测试模型。

训练模型:

1 首先从数据库中导出原始申报项目核心字段数据,其中subject代表项目课题名称,summary代表课题项目简介。

2 通过算法完成语料标记工作,具体算法原理和实现参见下文,效果如下图:

3 对数据进行预处理,其中包括正则匹配、文本分词、停用词处理、字符串操作、规约化数据等,处理后结果如下:

4 采用余弦相似度进行相似算法处理,最后识别结果如下:

5 PHP调用Python算法的运行结果:

当重复率大于阈值时:

当重复率小于阈值时:

4 科技项目查重训练模型


1 针对路径进行配置,其中源语料为datas.txt,标记处理后保存到同目录下的flagdatas.txt中

2 对原始语料进行标记和简单清洗,之所以采用标记,一方面便于序列化展示,另一方面区分项目名称和简介。

3 保存标记后的语料并统计处理结果

4 对标记数据进行分词处理。本文采用的结巴分词,分词后可以采用两种情况的处理,其一是不带词性标记的处理方式,直接将分词结果与停用词词典进行比对,去除停用词。其二是采用带有词性标注的分词结果,我们然后采用词典和去除词性的方式进行预处理,其中诸如虚词,助词等可以根据业务需求去除。而相对于名词、动词等主要词性,可以通过增加权重的方式进行处理。最终保村分词结果。作为训练语料库即对比语料库。

具体预处理源码如下:

    # 1 针对语料路径进行配置
path="../CheckRepeat/database/OrigCorpus/datas.txt" # 训练语料库
flagpath="../CheckRepeat/database/OrigCorpus/flagdatas.txt" # 语料标记 # 2 对原始语料进行标记和简单清洗
listset="" # 标记后的语料集合
i,j=1,1
with open(path,'r',encoding='utf-8') as f:
for rline in f.readlines():
line = rline.strip().replace(" ","")
if "summary" in line :
listset +="\n"+str(i)+"_"+line
i+=1 # 简介打标签
elif "subject" not in line:
listset +=line
elif "subject" in line:
listset +="\n"+str(j)+"_"+line
j+=1 # 项目题目打标签 # 3 保存标记后语料并统计标记结果
with open(flagpath,'w',encoding='utf-8') as f1:
f1.write(listset.strip())
print("="*70)
print("项目共计标题:"+str(len(listset.split("subject"))-1))
print("项目共计简介:"+str(len(listset.split("summary"))-1))
print("-"*70) # 4 对标记数据进行分词处理
cutpath="../CheckRepeat/database/OrigCorpus/cutdatas.txt" # 保存分词后的结果
cutword(flagpath,cutpath)

其执行2405条数据的性能如下:具体分析发现启动分词工具耗时1.2秒左右,其余耗时量主要是停用词比对时,两个矩阵计算造成的,这个问题可以通过算法改进,缩短耗时。

5 科技项目查重实现(测试)系统


1 接收项目文件(项目名称/项目简介)进行预处理操作,其实这个过程跟模型训练时的预处理算法是一致的。

2 将训练阶段处理后的数据进行处理,分割出项目名称/项目简介,分布存放在两个list中。

3 判断参数是否为空,如果不为空将对应的参数放入验证查重结果。

4 以测试数据和训练的每条数据的词项构建文本向量,通过文本向量的夹角即判断文本相似度,并反馈出结果。本文采用的是python自带的difflib模块进行处理,difflib是python提供的比较序列(string list)差异的模块。实现了三个类:1>SequenceMatcher 任意类型序列的比较 (可以比较字符串)2>Differ 对字符串进行比较3>HtmlDiff 将比较结果输出为html格式.理由是其相对比较成熟,本项目的处理量并不大。倘若处理G级或P级规模的数据,可以考虑使用google的gensim相似度算法,大大提高处理速度,幸运的是该算法也是python自带的一个模块。当然对其原理的理解,建议还是自己实现下。

5 对查重后的结果进行处理,可以保存到本地,也可以直接输出,由于本项目主要提供php调用,切php调用执行py文件之后,对输出结果不能换行处理,所以本项目添加一些html标签和css样式。

查重实现核心源码如下:

def checkfun(namestr):
subject={} # 记录查重结果,键值对,原句+重复率
summary={}
# 找到对比库的历史数据
checkpath ="../CheckRepeat/database/OrigCorpus/cutdatas.txt" # 数据库中对比项目语料库
with open(checkpath,"r",encoding="utf-8") as f:
checklist=[line[:] for line in f.readlines()]
subjectname=[sub for sub in checklist if "subject" in sub] # 项目名称
summaryname=[summ for summ in checklist if "summary" in summ] # 项目简介 if "subject" in namestr:
# 进行项目名称验证操作
for rline in subjectname:
line = ''.join(str(rline).split(' ')[:])
subp = difflib.SequenceMatcher(None,namestr.split('\n')[].replace('subject',''),line).ratio()
subject[line]=float('%.4f'%(subp))
if "summary" in namestr:
# 进行项目简介验证操作
for rline in summaryname:
line = ''.join(str(rline).split(' ')[:])
sump = difflib.SequenceMatcher(None,namestr.split('\n')[].replace('summary',''),line).ratio()
summary[line]=float('%.4f'%(sump)) # 打印检测结果
outreslut=""
sort1=sorted(subject.items(),key=lambda e:e[],reverse=True) #排序
outreslut +="项目名称:"+"*"*+"["+namestr.split('\n')[].replace('subject','') + "]"+"*"*+"的查重结果如下:\n\n"
for item in sort1[:]:
if item[] >= 0.5:
outreslut += "与项目库中\t[<span style=\"color:red\">"+item[].replace("\n",'')+"</span>]\t的相似率最高:<span style=\"color:red\">"+str(item[]) +"</span>\n"
else:
outreslut += "<span style=\"color:green\">没有查出重复的项目简介</span>\n" sort2=sorted(summary.items(),key=lambda e:e[],reverse=True) #排序
outreslut += "\n\n项目简介:"+"*"*+"["+namestr.split('\n')[].replace('summary','') + "]"+"*"*+"的查重结果如下:\n\n"
for item in sort2[:]:
if item[] >= 0.5:
outreslut += "与项目库中\t[<span style=\"color:red\">"+item[].replace("\n",'')+"</span>]\t的相似率最高:<span style=\"color:red\">"+str(item[]) +"</span>\n"
else:
outreslut += "<span style=\"color:green\">没有查出重复的项目简介</span>\n" # 写到文件里面
with open("../CheckRepeat/database/DealCorpus/checkout.txt",'w',encoding='utf-8') as f:
f.write(outreslut)
print(outreslut)

其运行结果如下:

6 PHP调用Python查重系统


1 php调用主要是$program变量下的语句,原理是:

python.exe的绝对路径,空格,调用py的主文件绝对路径,空格,参数1,空格,参数2

2 py文件通过sys相关参数进行接收,sys.argv[0]是py文本名,所以1-n对应你传入的参数如下:

# subject = sys.argv[1]
# summary = sys.argv[2]

3 exec($program,$result,$N)其执行py程序并返回一条字符串,返回结果保存在$result中。$N代表执行是否成功,成功返回1

4  shell_exec($program) 返回py文件所有语句的输出

5 php与py之间存在乱码问题,可以通过mb_convert_encoding ($output,"UTF-8", "GBK")解决

<?php
$name=mb_convert_encoding($_POST['projectname'], "GBK","UTF-8");
$sumb=mb_convert_encoding($_POST['projectsumb'], "GBK","UTF-8");
$program="D:/Users/Administrator/Anaconda3/python E:/pythonSource/CheckArticle/CheckRepeat/checkIndex.py ".$name." ".$sumb.""; #注意使用绝对路径.$name."".$sumb
$output = nl2br(shell_exec($program));
// $program1="D:/Users/Administrator/Anaconda3/python ../CheckRepeat/test.py ".$name." ".$sumb.""; #注意使用绝对路径.$name."".$sumb
// $result1 = shell_exec($program1);
echo mb_convert_encoding ($output,"UTF-8", "GBK");
// if ($output!=null){
// print_r(nl2br(file_get_contents('../CheckRepeat/database/DealCorpus/checkout.txt')));
// }
?>

7 参考文献:


[1] TF-IDF与余弦相似性的应用:http://www.ruanyifeng.com/blog/2013/03/tf-idf.html
[2] 海量数据相似度计算之simhash短文本查找:http://www.lanceyan.com/tag/simhash
[3] 用TF特征向量和simhash指纹计算中文文本的相似度:https://github.com/zyymax/text-similarity
[4] gensim文档相似度判断:http://kekefund.com/2016/05/27/gensim-similarity/
[5] python文本相似度计算:http://www.jianshu.com/p/edf666d3995f
[6] 如何计算两个文档的相似度:https://flystarhe.github.io/2016/08/30/document-similarity/
[7] gensim文档相似度判断:http://kekefund.com/2016/05/27/gensim-similarity/

【NLP】Python实例:基于文本相似度对申报项目进行查重设计的更多相关文章

  1. NLP(九) 文本相似度问题

    多个维度判别文本之间相似度 情感维度 Sentiment/Emotion 感官维度 Sense 特定词的出现 词频 TF 逆文本频率 IDF 构建N个M维向量,N是文档总数,M是所有文档的去重词汇量 ...

  2. Python实例---基于页面的后台管理[简单版]

    后台管理菜单 + 母板[css/content/js] 向后台提交数据[2种]:       1.  模态对话框(数据少操作,且Js复杂):        form表单 :优点:简单,前端提交后后台处 ...

  3. python实例编写(5)--异常处理,截图,用例设计

    一.python的异常处理 异常抛出处理机制: 1.若在运行时发生异常,解释器会查找相应的处理语句(handler) 2.若在当前函数无法找到,就将异常传给上层的调用函数,看是否能处理 3.如果在最外 ...

  4. 自然语言推断(NLI)、文本相似度相关开源项目推荐(Pytorch 实现)

    Awesome-Repositories-for-NLI-and-Semantic-Similarity mainly record pytorch implementations for NLI a ...

  5. 【NLP】Python实例:申报项目查重系统设计与实现

    Python实例:申报项目查重系统设计与实现 作者:白宁超 2017年5月18日17:51:37 摘要:关于查重系统很多人并不陌生,无论本科还是硕博毕业都不可避免涉及论文查重问题,这也对学术不正之风起 ...

  6. python 手把手教你基于搜索引擎实现文章查重

    前言 文章抄袭在互联网中普遍存在,很多博主都收受其烦.近几年随着互联网的发展,抄袭等不道德行为在互联网上愈演愈烈,甚至复制.黏贴后发布标原创屡见不鲜,部分抄袭后的文章甚至标记了一些联系方式从而使读者获 ...

  7. 基于python语言使用余弦相似性算法进行文本相似度分析

    编写此脚本的目的: 本人从事软件测试工作,近两年发现项目成员总会提出一些内容相似的问题,导致开发抱怨.一开始想搜索一下是否有此类工具能支持查重的工作,但并没找到,因此写了这个工具.通过从纸上谈兵到着手 ...

  8. NLP点滴——文本相似度

    [TOC] 前言 在自然语言处理过程中,经常会涉及到如何度量两个文本之间的相似性,我们都知道文本是一种高维的语义空间,如何对其进行抽象分解,从而能够站在数学角度去量化其相似性.而有了文本之间相似性的度 ...

  9. 从0到1,了解NLP中的文本相似度

    本文由云+社区发表 作者:netkiddy 导语 AI在2018年应该是互联网界最火的名词,没有之一.时间来到了9102年,也是项目相关,涉及到了一些AI写作相关的功能,为客户生成一些素材文章.但是, ...

随机推荐

  1. HttpClient + Testng实现接口测试

    HttpClient教程 : https://www.yeetrack.com/?p=779 一,所需要的环境: 1,testng .httpclient和相关的依赖包 二.使用HttpClient登 ...

  2. 解决mount.nfs: access denied by server while mounting错误

    环境:oraclelinux6.7 以前在centos服务器上安装nfs.挂载NFS都没出现问题,今天在oraclelinux上安装后,在客户端mount的时候报mount.nfs: access d ...

  3. 新建asp.net core项目

    开发环境:Windows Server R2 2008 开发工具:Microsoft Visual Studio 2017 新建asp.net core项目 创建web项目时,务必选择“ASP.NET ...

  4. 洛谷 P1162 填涂颜色【DFS】

    题目链接:https://www.luogu.org/problemnew/show/P1162 题目描述 由数字 0 组成的方阵中,有一任意形状闭合圈,闭合圈由数字 1 构成,围圈时只走上下左右 4 ...

  5. linux学习之使用fdisk命令进行磁盘分区(八)

    linux下使用fdisk命令进行磁盘分区 目录 分区类型 分区方法表示 文件系统 fdisk命令分区过程 分区类型 主分区:总共最多只能分四个 扩展分区:只能有一个,也算作主分区的一种,也就是说主分 ...

  6. NIO 中的读和写

    概述 读和写是I/O的基本过程.从一个通道中读取很简单:只需创建一个缓冲区,然后让通道将数据读到这个缓冲区中.写入也相当简单:创建一个缓冲区,用数据填充它,然后让通道用这些数据来执行写入操作. 从文件 ...

  7. jquery监听input元素输入

    一般我们监听input内容的变化都是通过onchange()事件来绑定,但这个做法有一个缺陷就是只有当正在被输入的input元素失去焦点时(即鼠标点击了别处)才会触发,而实际上我们往往希望能够满足在用 ...

  8. L1 与 L2 正则化

    参考这篇文章: https://baijiahao.baidu.com/s?id=1621054167310242353&wfr=spider&for=pc https://blog. ...

  9. hihoCoder.1509.异或排序(位运算 思路)

    题目链接 \(Description\) 给定长为\(n\)的序列\(A\).求有多少\(S\),满足\(0\leq S<2^{60}\),且对于所有\(i\in[1,n-1]\),\(a[i] ...

  10. COGS.1317.数列操作c(分块 区间加 区间求和)

    题目链接 #include<cmath> #include<cstdio> #include<cctype> #include<algorithm> u ...