RNN 通过字符语言模型 理解BPTT
链接:https://github.com/karpathy/char-rnn
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://github.com/Teaonly/beginlearning/tree/master/july
""" Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy) BSD License """ import numpy as np # data I/O data = open('input.txt', 'r').read() # should be simple plain text file chars = list(set(data)) data_size, vocab_size = len(data), len(chars) print 'data has %d characters, %d unique.' % (data_size, vocab_size) char_to_ix = { ch:i for i,ch in enumerate(chars) } ix_to_char = { i:ch for i,ch in enumerate(chars) } # hyperparameters hidden_size = 100 # size of hidden layer of neurons seq_length = 25 # number of steps to unroll the RNN for learning_rate = 1e-1 # model parameters Wxh = np.random.randn(hidden_size, vocab_size)*0.01 # input to hidden Whh = np.random.randn(hidden_size, hidden_size)*0.01 # hidden to hidden Why = np.random.randn(vocab_size, hidden_size)*0.01 # hidden to output bh = np.zeros((hidden_size, 1)) # hidden bias by = np.zeros((vocab_size, 1)) # output bias def lossFun(inputs, targets, hprev): """ inputs,targets are both list of integers. hprev is Hx1 array of initial hidden state returns the loss, gradients on model parameters, and last hidden state """ xs, hs, ys, ps = {}, {}, {}, {} hs[-1] = np.copy(hprev) loss = 0 # forward pass for t in xrange(len(inputs)): xs[t] = np.zeros((vocab_size,1)) # encode in 1-of-k representation xs[t][inputs[t]] = 1 hs[t] = np.tanh(np.dot(Wxh, xs[t]) + np.dot(Whh, hs[t-1]) + bh) # hidden state ys[t] = np.dot(Why, hs[t]) + by # unnormalized log probabilities for next chars ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t])) # probabilities for next chars loss += -np.log(ps[t][targets[t],0]) # softmax (cross-entropy loss) # backward pass: compute gradients going backwards dWxh, dWhh, dWhy = np.zeros_like(Wxh), np.zeros_like(Whh), np.zeros_like(Why) dbh, dby = np.zeros_like(bh), np.zeros_like(by) dhnext = np.zeros_like(hs[0]) for t in reversed(xrange(len(inputs))): dy = np.copy(ps[t]) dy[targets[t]] -= 1 # backprop into y. see http://cs231n.github.io/neural-networks-case-study/#grad if confused here dWhy += np.dot(dy, hs[t].T) dby += dy dh = np.dot(Why.T, dy) + dhnext # backprop into h dhraw = (1 - hs[t] * hs[t]) * dh # backprop through tanh nonlinearity dbh += dhraw dWxh += np.dot(dhraw, xs[t].T) dWhh += np.dot(dhraw, hs[t-1].T) dhnext = np.dot(Whh.T, dhraw) for dparam in [dWxh, dWhh, dWhy, dbh, dby]: np.clip(dparam, -5, 5, out=dparam) # clip to mitigate exploding gradients return loss, dWxh, dWhh, dWhy, dbh, dby, hs[len(inputs)-1] def sample(h, seed_ix, n): """ sample a sequence of integers from the model h is memory state, seed_ix is seed letter for first time step """ x = np.zeros((vocab_size, 1)) x[seed_ix] = 1 ixes = [] for t in xrange(n): h = np.tanh(np.dot(Wxh, x) + np.dot(Whh, h) + bh) y = np.dot(Why, h) + by p = np.exp(y) / np.sum(np.exp(y)) ix = np.random.choice(range(vocab_size), p=p.ravel()) x = np.zeros((vocab_size, 1)) x[ix] = 1 ixes.append(ix) return ixes n, p = 0, 0 mWxh, mWhh, mWhy = np.zeros_like(Wxh), np.zeros_like(Whh), np.zeros_like(Why) mbh, mby = np.zeros_like(bh), np.zeros_like(by) # memory variables for Adagrad smooth_loss = -np.log(1.0/vocab_size)*seq_length # loss at iteration 0 while True: # prepare inputs (we're sweeping from left to right in steps seq_length long) if p+seq_length+1 >= len(data) or n == 0: hprev = np.zeros((hidden_size,1)) # reset RNN memory p = 0 # go from start of data inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]] targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]] # sample from the model now and then if n % 100 == 0: sample_ix = sample(hprev, inputs[0], 200) txt = ''.join(ix_to_char[ix] for ix in sample_ix) print '----\n %s \n----' % (txt, ) # forward seq_length characters through the net and fetch gradient loss, dWxh, dWhh, dWhy, dbh, dby, hprev = lossFun(inputs, targets, hprev) smooth_loss = smooth_loss * 0.999 + loss * 0.001 if n % 100 == 0: print 'iter %d, loss: %f' % (n, smooth_loss) # print progress # perform parameter update with Adagrad for param, dparam, mem in zip([Wxh, Whh, Why, bh, by], [dWxh, dWhh, dWhy, dbh, dby], [mWxh, mWhh, mWhy, mbh, mby]): mem += dparam * dparam param += -learning_rate * dparam / np.sqrt(mem + 1e-8) # adagrad update p += seq_length # move data pointer n += 1 # iteration counter
RNN 通过字符语言模型 理解BPTT的更多相关文章
- RNN实现字符级语言模型 - 恐龙岛(自己写RNN前向后向版本+keras版本)
问题描述:样本为所有恐龙名字,为了构建字符级语言模型来生成新的名称,你的模型将学习不同的名称模式,并随机生成新的名字. 在这里你将学习到: 如何存储文本数据以便使用rnn进行处理. 如何合成数据,通过 ...
- Python中文字符的理解:str()、repr()、print
Python中文字符的理解:str().repr().print 字数1384 阅读4 评论0 喜欢0 都说Python人不把文字编码这块从头到尾.从古至今全研究通透的话是完全玩不转的.我终于深刻的理 ...
- RNN(1) ------ “理解LSTM”(转载)
原文链接:http://www.jianshu.com/p/9dc9f41f0b29 Recurrent Neural Networks 人类并不是每时每刻都从一片空白的大脑开始他们的思考.在你阅读这 ...
- 用CNTK搞深度学习 (二) 训练基于RNN的自然语言模型 ( language model )
前一篇文章 用 CNTK 搞深度学习 (一) 入门 介绍了用CNTK构建简单前向神经网络的例子.现在假设读者已经懂得了使用CNTK的基本方法.现在我们做一个稍微复杂一点,也是自然语言挖掘中很火 ...
- python基础之Day7part2 史上最清晰字符编码理解
二.字符编码 基础知识: 文本编辑器存取文件原理与py执行原理异同: 存/写:进入文本编辑器 写内容 保存后 内存数据刷到硬盘 取/读:进入文本编辑器 找到内容 从硬盘读到内存 notepad把文件内 ...
- 对GBK的理解(内附全部字符编码列表):扩充的2万汉字低字节的高位不等于1,而且还剩许多编码空间没有利用
各种编码查询表:http://bm.kdd.cc/ 由于GB 2312-80只收录6763个汉字,有不少汉字,如部分在GB 2312-80推出以后才简化的汉字(如“啰”),部分人名用字(如中国前总理朱 ...
- 深入理解Python字符编码--转
http://blog.51cto.com/9478652/2057896 不论你是有着多年经验的 Python 老司机还是刚入门 Python 不久,你一定遇到过UnicodeEncodeError ...
- 深入理解Python字符编码
不论你是有着多年经验的 Python 老司机还是刚入门 Python 不久,你一定遇到过UnicodeEncodeError.UnicodeDecodeError 错误,每当遇到错误我们就拿着 enc ...
- RNN的介绍
一.状态和模型 在CNN网络中的训练样本的数据为IID数据(独立同分布数据),所解决的问题也是分类问题或者回归问题或者是特征表达问题.但更多的数据是不满足IID的,如语言翻译,自动文本生成.它们是一个 ...
随机推荐
- Bellman-Ford算法——为什么要循环n-1次?图有n个点,又不能有回路,所以最短路径最多n-1边。又因为每次循环,至少relax一边所以最多n-1次就行了!
单源最短路径 给定一个图,和一个源顶点src,找到从src到其它所有所有顶点的最短路径,图中可能含有负权值的边. Dijksra的算法是一个贪婪算法,时间复杂度是O(VLogV)(使用最小堆).但是迪 ...
- redis集群搭建教程(以3.2.2为例)
redis从3.0版本开始支持集群,2.X版本主支持sentinel主从模式:所以要搭建集群务必下载3.0以上版本,本教程以3.2.2版本为例. redis集群最少要有3个主节点,最典型的是3主3从组 ...
- QPainter绘制渐进色文本
参考资料:https://blog.csdn.net/what951006/article/details/52876513 效果图: 代码: void WgtText::paintEvent(QPa ...
- 生成PDF文档之iText
iTextSharp.text.Document:这是iText库中最常用的类,它代表了一个pdf实例.如果你需要从零开始生成一个PDF文件,你需要使用这个Document类.首先创建(new)该实例 ...
- Vue--项目开发之实现tabbar功能来学习单文件组件2
上一篇文章里item.vue里的span标签内容是写死了,但是我们不希望写死 所以对于五个tab选项的标题需要从外部传入,也就说 需要在item.vue里的script里写上 export defau ...
- ASCII编码、Unicode编码、UTF-8
一.区别 ASCII.Unicode 是“字符集” UTF-8 .UTF-16.UTF-32 是“编码规则” 其中: 字符集:为每一个「字符」分配一个唯一的 ID(学名为码位 / 码点 / Code ...
- laravel composer 安装指定版本以及基本的配置
1 安装指定的 laravel版本 以下的案例是安装5.2版本 composer create-project laravel/laravel=5.2.* --prefer-dist 2 配置 优化相 ...
- nodejs项目文件搭建环境
nodeJS,作为一门较为“新鲜的”的原因,近年来普遍受到一些前端想转为全栈的ITer青睐,在想用nodeJS配合数据库开发出一个小玩意的路上,萌新们第一步便要遇到就是环境的支持.node作为Java ...
- js作用域及闭包
作用域 执行环境是js最为重要的一个概念.执行环境定义了变量或函数有权访问的其他数据,决定了它们各自的行为. 1.全局执行环境就是最外围的一个执行环境,每一个函数都有自己的作用域 2.简单的说局部作用 ...
- 1.2socket服务器使用多线程
socket服务器代码如下 # -*- coding: utf-8 -*-from socket import * import time import threading,_thread as th ...