<题目连接>

题目大意:

一位同学想要买手表,他有n种硬币,每种硬币已知有num[i]个。已知手表的价钱最多m元,问她用这些钱能够凑出多少种价格来买手表。

解题分析:

很明显,这是一道多重背包的问题,下面是用二进制拆分的多重背包的万能模板。

#include <bits/stdc++.h>
using namespace std; const int INF = 1e9;
int n,m,val[],cnt[],dp[int(1e5+)]; void OneZeroPack(int m,int v,int value){ //01背包
for(int i=m;i>=v;i--)
dp[i]=max(dp[i],dp[i-v]+value);
} void CompletePack(int m,int v,int value){ //完全背包
for(int i=v;i<=m;i++)
dp[i]=max(dp[i],dp[i-v]+value);
} void MultiplePack(int m,int v,int value,int num){
if(v*num>=m) { CompletePack(m,v,value); return; } //如果这些物品总体积大于容量,当成完全背包计算
for(int k=;k<=num;k<<=){ //否则当成01背包,但是对这些物品进行二进制拆分
OneZeroPack(m,v*k,value*k);
num-=k;
}
if(num)OneZeroPack(m,v*num,value*num);
} int main(){
while(~scanf("%d%d",&n,&m),n||m){
for(int i=;i<=m;i++)dp[i]=-INF;
for(int i=;i<n;i++)scanf("%d",&val[i]);
for(int i=;i<n;i++)scanf("%d",&cnt[i]);
dp[]=;
for(int i=;i<n;i++)
MultiplePack(m,val[i],val[i],cnt[i]);
int ans=;
for(int i=;i<=m;i++)
if(dp[i]>)ans++;
printf("%d\n",ans);
}
}

另一种方法:

#include <cstdio>
#include <cstring> bool dp[];
int use[];//i元钱时某种钱用的次数
int n, m;
int val[], num[]; void solve()
{
memset(dp, , sizeof(dp));
dp[] = ;
int count = ;
for (int i = ; i <= n; i++) //此题解法就是,现将每一个物品*(1~num[i])所能达到的价格都标记
{
memset(use, , sizeof(use)); //每次初始化第i种钱用了0次
for (int j = val[i]; j <= m; j++) //顺序枚举钱数
{
if (dp[j - val[i]] && !dp[j] && use[j - val[i]] < num[i])
{
dp[j] = ; //如果钱数为i的情况记录过了,那么就标记,防止count重复+1
use[j] = use[j - val[i]] + ;//到达j元用的i种钱的次数是到达 j-val[i]元用的次数加1
count++;
}
}
}
printf("%d\n", count);
} int main()
{
while (~scanf("%d %d", &n, &m),n||m)
{
for (int i = ; i <= n; i++)
scanf("%d", &val[i]);
for (int i = ; i <= n; i++)
scanf("%d", &num[i]); solve();
}
return ;
}

HDU 2844 Coins 【多重背包】(模板)的更多相关文章

  1. hdu 2844 Coins (多重背包+二进制优化)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=2844 思路:多重背包 , dp[i] ,容量为i的背包最多能凑到多少容量,如果dp[i] = i,那么代表 ...

  2. HDu -2844 Coins多重背包

    这道题是典型的多重背包的题目,也是最基础的多重背包的题目 题目大意:给定n和m, 其中n为有多少中钱币, m为背包的容量,让你求出在1 - m 之间有多少种价钱的组合,由于这道题价值和重量相等,所以就 ...

  3. HDU - 2844 Coins(多重背包+完全背包)

    题意 给n个币的价值和其数量,问能组合成\(1-m\)中多少个不同的值. 分析 对\(c[i]*a[i]>=m\)的币,相当于完全背包:\(c[i]*a[i]<m\)的币则是多重背包,考虑 ...

  4. hdu 2844 Coins 多重背包(模板) *

    Coins                                                                             Time Limit: 2000/1 ...

  5. HDU 2844 Coins (多重背包计数 空间换时间)

    Coins Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Subm ...

  6. hdu 2844 coins(多重背包 二进制拆分法)

    Problem Description Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. On ...

  7. HDU 2844 Coin 多重背包

    Coins Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  8. 背包系列练习及总结(hud 2602 && hdu 2844 Coins && hdu 2159 && poj 1170 Shopping Offers && hdu 3092 Least common multiple && poj 1015 Jury Compromise)

    作为一个oier,以及大学acm党背包是必不可少的一部分.好久没做背包类动规了.久违地练习下-.- dd__engi的背包九讲:http://love-oriented.com/pack/ 鸣谢htt ...

  9. HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化)

    HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化) 题意分析 先把每种硬币按照二进制拆分好,然后做01背包即可.需要注意的是本题只需要求解可以凑出几种金钱的价格,而不需要输出种数 ...

  10. HDU 2191 珍惜现在,感恩生活(多重背包模板题)

    多重背包模板题 #include<iostream> #include<cstring> #include<algorithm> using namespace s ...

随机推荐

  1. Python2和Python3中print的不同点

    在Python2和Python3中都提供print()方法来打印信息,但两个版本间的print稍微有差异 主要体现在以下几个方面: 1.python3中print是一个内置函数,有多个参数,而pyth ...

  2. Caffe源码阅读(1) 全连接层

    Caffe源码阅读(1) 全连接层 发表于 2014-09-15   |   今天看全连接层的实现.主要看的是https://github.com/BVLC/caffe/blob/master/src ...

  3. python - class内置方法 doc/module/del(析构方法)/cal 方法

    __doc__ # __doc__ #摘要信息 #这个属性不会继承给子类 class Test(): """这是摘要信息""" pass x ...

  4. oc语言中的构造方法

    一 构造方法的调用 完整的创建一个可用的对象:Person *p=[Person new]; New方法的内部会分别调用两个方法来完成2件事情,1)使用alloc方法来分配存储空间(返回分配的对象): ...

  5. 一文看懂汽车电子ECU bootloader工作原理及开发要点

    随着半导体技术的不断进步(按照摩尔定律),MCU内部集成的逻辑功能外设越来越多,存储器也越来越大.消费者对于汽车节能(经济和法规对排放的要求)型.舒适性.互联性.安全性(功能安全和信息安全)的要求越来 ...

  6. Python3学习笔记17-类与实例

    面向对象最重要的概念就是类(Class)和实例(Instance),必须牢记类是抽象的模板,比如Student类 而实例是根据类创建出来的一个个具体的“对象”,每个对象都拥有相同的方法,但各自的数据可 ...

  7. 使用nginx实现浏览器跨域请求

    跨域访问问题, 相信很多人都遇到过, 并且都用不同的办法去解决过. 方法有很多种, 不一一叙述了. 这里主要使用nginx反向代理来解决跨域问题. 啥是跨域? 假如你是百度开发人员, 在百度页面去请求 ...

  8. mybatis框架之foreach标签

    foreach一共有三种类型,分别为List,[](array),Map三种,下面表格是我总结的各个属性的用途和注意点. foreach属性 属性 描述 item 循环体中的具体对象.支持属性的点路径 ...

  9. Protocol Buffers简明教程

    随着微服务架构的流行,RPC框架渐渐地成为服务框架的一个重要部分. 在很多RPC的设计中,都采用了高性能的编解码技术,Protocol Buffers就属于其中的佼佼者. Protocol Buffe ...

  10. 【python】中文提取,判断,分词

    参考: http://www.cnblogs.com/kaituorensheng/p/3595879.html https://github.com/fxsjy/jieba 判断是否包含中文 def ...