首先拿出最后要求解的问题:$\underset{\alpha}{min}W(\alpha)=\frac{1}{2} \sum_{i,j=1}^{n}y^{(i)}y^{(j)}\alpha_{i}\alpha_{j}k_{ij}-\sum_{i=1}^{n}\alpha_{i}$,使得满足:
(1)$0 \leq \alpha_{i}\leq C,1 \leq i \leq n$
(2)$\sum_{i=1}^{n}\alpha_{i}y^{(i)}=0$

求解的策略是每次选出两个$\alpha$进行更新。比如选取的是$\alpha_{1},\alpha_{2}$。由于$\sum_{i=1}^{n}\alpha_{i}y^{(i)}=0$,所以$\alpha_{1}y^{(1)}+\alpha_{2}y^{(2)}=-\sum_{i=3}^{n}\alpha_{i}y^{(i)}$。等号右侧是一个常数,设为$\xi$。当$y^{(1)}$和$y^{(2)}$异号时,有$\alpha_{1}-\alpha_{2}=\xi$或者$\alpha_{2}-\alpha_{1}=\xi$。同时它们还要满足$0\leq \alpha \leq C$。

我们设$\alpha_{2}$的合法区间为[L,R],那么此时有$L=max(0,\alpha_{2}-\alpha_{1}),R=min(C,C+\alpha_{2}-\alpha_{1})$。同理当$y^{(1)}$和$y^{(2)}$同号时有$L=max(0,\alpha_{2}+\alpha_{1}-C),R=min(C,\alpha_{2}+\alpha_{1})$。

首先定义$u=w^{T}x+b$

将$\alpha_{1},\alpha_{2}$带入$W(\alpha)$中得到:
$W(\alpha)=\frac{1}{2}(k_{11}\alpha_{1}^{2}+k_{22}\alpha_{2}^{2})+sk_{12}\alpha_{1}\alpha_{2}+y^{(1)}\alpha_{1}v_{1}+y^{(2)}\alpha_{2}v_{2}-\alpha_{1}-\alpha_{2}+P$

其中:
(1)$s=y^{(1)}y^{(2)}$
(2)$v_{1}=\sum_{i=3}^{n}y^{(i)}\alpha_{i}k_{1i}=u_{1}-b-y^{(1)}\alpha_{1}^{old}k_{11}-y^{(2)}\alpha_{2}^{old}k_{12}$
(3)$v_{2}=\sum_{i=3}^{n}y^{(i)}\alpha_{i}k_{2i}=u_{2}-b-y^{(1)}\alpha_{1}^{old}k_{12}-y^{(2)}\alpha_{2}^{old}k_{22}$

由于$y^{(1)}\alpha_{1}+y^{(2)}\alpha_{2}=y^{(1)}\alpha_{1}^{old}+y^{(2)}\alpha_{2}^{old}=\xi$
两边同时乘以$y^{(1)}$,得到$\alpha_{1}+s\alpha_{2}=\alpha_{1}^{old}+s\alpha_{2}^{old}=y^{(1)}\xi=T$

所以$\alpha_{1}=T-s\alpha_{2}$,将其带入$W(\alpha)$,得到$W(\alpha)=\frac{1}{2}(k_{11}(T-s\alpha_{2})^{2}+k_{22}\alpha_{2}^{2})+sk_{12}(T-s\alpha_{2})\alpha_{2}+y^{(1)}(T-s\alpha_{2})v_{1}+y^{(2)}\alpha_{2}v_{2}-(T-s\alpha_{2})-\alpha_{2}+P$

其实这是一个关于$\alpha_{2}$的二次函数,在一阶导数等于0的地方取得最小值,一阶导数为:$\frac{\partial W}{\partial \alpha_{2}}=-sk_{11}(T-s\alpha_{2})+k_{22}\alpha_{2}+sk_{12}(T-s\alpha_{2})-k_{12}\alpha_{2}-y^{(2)}v_{1}+y^{(2)}v_{2}+s-1=0$

移项得:$\alpha_{2}(k_{11}+k_{22}-2k_{12})=s(k_{11}-k_{12})T+y^{(2)}(v_{1}-v_{2})+1-s$

将$v_{1},v_{2}$带入得:$\alpha_{2}(k_{11}+k_{22}-2k_{12})=\alpha_{2}^{old}(k_{11}+k_{22}-2k_{12})+y^{(2)}(u_{1}-u_{2}+y^{(2)}-y^{(1)})$

令:
(1)$\eta =k_{11}+k_{22}-2k_{12}$
(2)$E_{1}=u_{1}-y^{(1)}$
(3)$E_{2}=u_{2}-y^{(2)}$

那么有:
$\alpha_{2}^{new}=\alpha_{2}^{old}+\frac{y^{(2)}(E_{1}-E_{2})}{\eta }$

这里就求出了新的$\alpha_{2}$。需要注意的是如果$\alpha_{2}$不在上面求出的[L,R]区间,要做一下裁剪。

由$y^{(1)}\alpha_{1}+y^{(2)}\alpha_{2}=y^{(1)}\alpha_{1}^{old}+y^{(2)}\alpha_{2}^{old}$可得:
$\alpha_{1}^{new}=\alpha_{1}^{old}+y^{(1)}y^{(2)}(\alpha_{2}^{old}-\alpha_{2}^{new})$

最后更新b
$b=\left\{\begin{matrix} b_{1} & 0<\alpha_{1}<C\\
b_{2} & 0<\alpha_{2}<C\\
\frac{1}{2}(b_{1}+b_{2}) & other
\end{matrix}\right.$

其中
$b_{1}=b-E_{1}-y^{(1)}(\alpha_{1}^{new}-\alpha_{1}^{old})k_{11}-y^{(2)}(\alpha_{2}^{new}-\alpha_{2}^{old})k_{12}$
$b_{2}=b-E_{2}-y^{(1)}(\alpha_{1}^{new}-\alpha_{1}^{old})k_{12}-y^{(2)}(\alpha_{2}^{new}-\alpha_{2}^{old})k_{22}$

这样更新b会迫使输入$x_{1}$时输出$y^{(1)}$,输入$x_{2}$时输出$y^{(2)}$

from numpy import *
import operator
from time import sleep
import numpy as np;
from svmplatt import *;
import matplotlib.pyplot as plt class PlattSVM(object):
def __init__(self):
self.X = []
self.labelMat = []
self.C = 0.0
self.tol = 0.0
self.b = 0.0
self.kValue=0.0
self.maxIter=10000
self.svIndx=[]
self.sptVects=[]
self.SVlabel=[] def loadDataSet(self,fileName):
fr = open(fileName)
for line in fr.readlines():
lineArr = line.strip().split('\t')
self.X.append([float(lineArr[0]), float(lineArr[1])])
self.labelMat.append(float(lineArr[2]))
self.initparam() def kernels(self,dataMat,A):
m,n=shape(dataMat)
K=mat(zeros((m,1)))
for j in range(m):
delta=dataMat[j,:]-A
K[j]=delta*delta.T
K=exp(K/-1*self.kValue**2)
return K def initparam(self):
self.X = mat(self.X)
self.labelMat = mat(self.labelMat).T
self.m = shape(self.X)[0]
self.lambdas = mat(zeros((self.m,1)))
self.eCache = mat(zeros((self.m,2)))
self.K = mat(zeros((self.m,self.m)))
for i in range(self.m):
self.K[:,i] = self.kernels(self.X,self.X[i,:]) def randJ(self,i):
j=i
while(j==i):
j = int(random.uniform(0,self.m))
return j def clipLambda(self,aj,H,L):
if aj > H: aj = H
if L > aj: aj = L
return aj def calcEk(self,k):
return float(multiply(self.lambdas,self.labelMat).T*self.K[:,k] + self.b) - float(self.labelMat[k]) def chooseJ(self,i,Ei):
maxK = -1; maxDeltaE = 0; Ej = 0
self.eCache[i] = [1,Ei]
validEcacheList = nonzero(self.eCache[:,0].A)[0]
if (len(validEcacheList)) > 1:
for k in validEcacheList:
if k == i: continue
Ek = self.calcEk(k)
deltaE = abs(Ei - Ek)
if (deltaE > maxDeltaE):
maxK = k; maxDeltaE = deltaE; Ej = Ek
return maxK, Ej
else:
j = self.randJ(i)
Ej = self.calcEk(j)
return j, Ej def innerLoop(self,i):
Ei = self.calcEk(i) if ((self.labelMat[i]*Ei < -self.tol) and (self.lambdas[i] < self.C)) or ((self.labelMat[i]*Ei > self.tol) and (self.lambdas[i] > 0)):
j,Ej = self.chooseJ(i, Ei)
lambdaIold = self.lambdas[i].copy(); lambdaJold = self.lambdas[j].copy();
if (self.labelMat[i] != self.labelMat[j]):
L = max(0, self.lambdas[j] - self.lambdas[i])
H = min(self.C, self.C + self.lambdas[j] - self.lambdas[i])
else:
L = max(0, self.lambdas[j] + self.lambdas[i] - self.C)
H = min(self.C, self.lambdas[j] + self.lambdas[i])
if L==H: return 0
eta = 2.0 * self.K[i,j] - self.K[i,i] - self.K[j,j]
if eta >= 0: return 0
self.lambdas[j] -= self.labelMat[j]*(Ei - Ej)/eta
self.lambdas[j] = self.clipLambda(self.lambdas[j],H,L)
self.eCache[j] = [1,self.calcEk(j)]
if (abs(self.lambdas[j] - lambdaJold) < 0.00001): return 0
self.lambdas[i] += self.labelMat[j]*self.labelMat[i]*(lambdaJold - self.lambdas[j])
self.eCache[i] = [1,self.calcEk(i)] b1 = self.b - Ei- self.labelMat[i]*(self.lambdas[i]-lambdaIold)*self.K[i,i] - self.labelMat[j]*(self.lambdas[j]-lambdaJold)*self.K[i,j]
b2 = self.b - Ej- self.labelMat[i]*(self.lambdas[i]-lambdaIold)*self.K[i,j] - self.labelMat[j]*(self.lambdas[j]-lambdaJold)*self.K[j,j] if (0 < self.lambdas[i]) and (self.C > self.lambdas[i]): self.b = b1
elif (0 < self.lambdas[j]) and (self.C > self.lambdas[j]): self.b = b2
else: self.b = (b1 + b2)/2.0;
return 1
else: return 0 def train(self): #full Platt SMO
step = 0
entireflag = True; lambdaPairsChanged = 0 while (step < self.maxIter) and ((lambdaPairsChanged > 0) or (entireflag)):
lambdaPairsChanged = 0
if entireflag:
for i in range(self.m):
lambdaPairsChanged += self.innerLoop(i)
step += 1
else:
nonBoundIs = nonzero((self.lambdas.A > 0) * (self.lambdas.A < self.C))[0] for i in nonBoundIs: lambdaPairsChanged += self.innerLoop(i) step += 1 if entireflag: entireflag = False elif (lambdaPairsChanged == 0): entireflag = True self.svIndx = nonzero(self.lambdas.A>0)[0]
self.sptVects = self.X[self.svIndx]
self.SVlabel = self.labelMat[self.svIndx] def scatterplot(self,plt):
fig = plt.figure()
ax = fig.add_subplot(111)
for i in range(shape(self.X)[0]):
if self.lambdas[i] != 0:
ax.scatter(self.X[i,0],self.X[i,1],c='green',marker='s',s=50)
elif self.labelMat[i] == 1:
ax.scatter(self.X[i,0],self.X[i,1],c='blue',marker='o')
elif self.labelMat[i] == -1:
ax.scatter(self.X[i,0],self.X[i,1],c='red',marker='o') svm = PlattSVM()
svm.C=70
svm.tol=0.001
svm.maxIter=2000
svm.kValue= 3.0
svm.loadDataSet('nolinear.txt') svm.train() print(svm.svIndx)
print(shape(svm.sptVects)[0])
print("b:",svm.b) svm.scatterplot(plt)
plt.show()

 

实验结果

SVM学习笔记5-SMO的更多相关文章

  1. SVM学习笔记(一)

    支持向量机即Support Vector Machine,简称SVM.一听这个名字,就有眩晕的感觉.支持(Support).向量(Vector).机器(Machine),这三个毫无关联的词,硬生生地凑 ...

  2. SVM学习笔记

    一.SVM概述 支持向量机(support vector machine)是一系列的监督学习算法,能用于分类.回归分析.原本的SVM是个二分类算法,通过引入“OVO”或者“OVR”可以扩展到多分类问题 ...

  3. SVM学习笔记(二)----手写数字识别

    引言 上一篇博客整理了一下SVM分类算法的基本理论问题,它分类的基本思想是利用最大间隔进行分类,处理非线性问题是通过核函数将特征向量映射到高维空间,从而变成线性可分的,但是运算却是在低维空间运行的.考 ...

  4. 机器学习6—SVM学习笔记

    机器学习牛人博客 机器学习实战之SVM 三种SVM的对偶问题 拉格朗日乘子法和KKT条件 支持向量机通俗导论(理解SVM的三层境界) 解密SVM系列(一):关于拉格朗日乘子法和KKT条件 解密SVM系 ...

  5. SVM学习笔记(一):libsvm参数说明(转)

    LIBSVM 数据格式需要---------------------- 决策属性 条件属性a 条件属性b ... 2 1:7 2:5 ... 1 1:4 2:2 ... 数据格式转换--------- ...

  6. SVM学习笔记-线性支撑向量机

    对于PLA算法来说,最终得到哪一条线是不一定的,取决于算法scan数据的过程. 从VC bound的角度来说,上述三条线的复杂度是一样的 Eout(w)≤Ein0+Ω(H)dvc= ...

  7. SVM学习笔记4-核函数和离群点的处理

    核函数在svm里,核函数是这样定义的.核函数是一个n*n(样本个数)的矩阵,其中:$K_{ij}=exp(-\frac{||x^{(i)}-x^{(j)}||^{2}}{2\sigma ^{2}})$ ...

  8. SVM学习笔记1-问题定义

    问题定义: 给出一些样本,包含两类.svm试图找到一个超平面,将数据分开,并且每种样本到超平面的距离的最小值最大. 输入样本:$\{x_{i},y_{i}| 1\leq i\leq n \}$,$y_ ...

  9. SVM学习笔记(二):什么是交叉验证

    交叉验证:拟合的好,同时预测也要准确 我们以K折交叉验证(k-folded cross validation)来说明它的具体步骤.{A1,A2,A3,A4,A5,A6,A7,A8,A9} 为了简化,取 ...

随机推荐

  1. 强力上攻后,在缓解期结束时,MACD将死叉,的后续情形

    强力上攻后,在缓解期结束时,MACD将死叉,的后续情形

  2. LeetCode121.买卖股票的最佳时机

    给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格. 如果你最多只允许完成一笔交易(即买入和卖出一支股票),设计一个算法来计算你所能获取的最大利润. 注意你不能在买入股票前卖出股票. 示例 ...

  3. java生成随机六位数的验证码&随机生成十位数ValidCode码,用于邮件的验证&检查是不是符合为合法的中国的手机号码

    package com.demo.test1; import java.security.NoSuchAlgorithmException; import java.security.SecureRa ...

  4. MongoDB--$project和$push的区别

    正文开始前,首先需要表名几条定义: 聚合(aggregate)是基于数据处理的聚合管道,每个文档通过一个由多个阶段(stage)组成的管道,可以对每个阶段的管道进行分组.过滤等功能,然后经过一系列的处 ...

  5. jQuery绑定事件方法及区别(bind,click,on,live,one)

    第一种方式: ? 1 2 3 4 5 $(document).ready(function(){  $("#clickme").click(function(){  alert(& ...

  6. 手动创建mfc工程(留存方便复制)

    案例一. #include <afxwin.h> class CMyWnd : public CWnd { //DECLARE_DYNCREATE(CMyWnd) public: CMyW ...

  7. 【安装虚拟机一】配置VMware

    安装软件 VMware 10 CentOS-6.5-x86_64-minimal.iso 第一步:打开VMware 10  主页选择 “创建新的虚拟机” 第二步:选择自定义设置 第三步:设置虚拟机兼容 ...

  8. File §1

    The Class of File, it can be seen as one document, also can be seen as list of documents. File  f = ...

  9. 20165316 2017-2018-2《Java程序设计》课程总结

    20165316 2017-2018-2<Java程序设计>课程总结 一.每周作业链接汇总 1. 预备作业一:我期望的师生关系 20165316 我期望的师生关系 摘要: 典型老师 师生关 ...

  10. Kivy之常用的小知识

    1.设置标题 app.title = '测试' 2.设置屏幕长度 Window.size=1000,600 3.设置屏幕右上角icon app.title = r'C:\Users\Administr ...