Description

We remind that the permutation of some final set is a one-to-one mapping of the set onto itself. Less formally, that is a way to reorder elements of the set. For example, one can define a permutation of the set {1,2,3,4,5} as follows: 
 
This record defines a permutation P as follows: P(1) = 4, P(2) = 1, P(3) = 5, etc. 
What is the value of the expression P(P(1))? It’s clear, that P(P(1)) = P(4) = 2. And P(P(3)) = P(5) = 3. One can easily see that if P(n) is a permutation then P(P(n)) is a permutation as well. In our example (believe us) 
 
It is natural to denote this permutation by P2(n) = P(P(n)). In a general form the defenition is as follows: P(n) = P1(n), Pk(n) = P(Pk-1(n)). Among the permutations there is a very important one — that moves nothing: 
 
It is clear that for every k the following relation is satisfied: (EN)k = EN. The following less trivial statement is correct (we won't prove it here, you may prove it yourself incidentally): Let P(n) be some permutation of an N elements set. Then there exists a natural number k, that Pk = EN. The least natural k such that Pk = EN is called an order of the permutation P. 
The problem that your program should solve is formulated now in a very simple manner: "Given a permutation find its order."

Input

In the first line of the standard input an only natural number N (1 <= N <= 1000) is contained, that is a number of elements in the set that is rearranged by this permutation. In the second line there are N natural numbers of the range from 1 up to N, separated by a space, that define a permutation — the numbers P(1), P(2),…, P(N).

Output

You should write an only natural number to the standard output, that is an order of the permutation. You may consider that an answer shouldn't exceed 109.

Sample Input

5
4 1 5 2 3

Sample Output

6

启发博客:http://blog.csdn.net/tc_to_top/article/details/48132609

题目大意:求将一个排列p(n)还原成En(1,2,3,4...)的最小置换次数

题目分析:计算置换中每个循环节内元素的个数,答案就是这个数的最小公倍数,很好理解,假设某个循环节包含3个元素,则这个循环节还原需要3次,另一个循环节包含2个元素,需要2次置换还原,因此我要让全部序列都还原,只需要取它们的最小公倍数即可

 #include<cstdio>
#include<iostream>
#include<cstring>
#include<string.h>
using namespace std; int a[];
bool vis[];
long long gcd(long long b,long long c)//计算最大公约数
{
return c==?b:gcd(c,b%c);
} long long lcm(long long b,long long c)//计算最小公倍数
{
return b * c/ gcd(b, c);
} int main()
{
int n,i,tmp,j;
long long res;
while(~scanf("%d",&n))
{
for(i=;i<=n;i++)
scanf("%d",&a[i]);
memset(vis,false,sizeof(vis));
res=;
for(i=;i<=n;i++)
{
if(!vis[i])
{
j=i;
tmp=;
while(!vis[j])
{
vis[j]=true;
tmp++;
j=a[j];
}
}
res=lcm(res,(long long)tmp);
}
printf("%lld\n",res);
}
return ;
}

												

POJ 2369 Permutations(置换群概念题)的更多相关文章

  1. poj 2369 Permutations - 数论

    We remind that the permutation of some final set is a one-to-one mapping of the set onto itself. Les ...

  2. POJ 2369 Permutations

    傻逼图论. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm& ...

  3. poj 2369 Permutations 置换

    题目链接 给一个数列, 求这个数列置换成1, 2, 3....n需要多少次. 就是里面所有小的置换的长度的lcm. #include <iostream> #include <vec ...

  4. poj 2369 Permutations 更换水称号

    寻找循环节求lcm够了,如果答案是12345应该输出1.这是下一个洞. #include<iostream> #include<cstdio> #include<cstr ...

  5. poj 2369 Permutations (置换入门)

    题意:给你一堆无序的数列p,求k,使得p^k=p 思路:利用置换的性质,先找出所有的循环,然后循环中元素的个数的lcm就是答案 代码: #include <cstdio> #include ...

  6. POJ 2369 Permutations (置换的秩P^k = I)

    题意 给定一个置换形式如,问经过几次置换可以变为恒等置换 思路 就是求k使得Pk = I. 我们知道一个置换可以表示为几个轮换的乘积,那么k就是所有轮换长度的最小公倍数. 把一个置换转换成轮换的方法也 ...

  7. Sliding Window POJ - 2823 单调队列模板题

    Sliding Window POJ - 2823 单调队列模板题 题意 给出一个数列 并且给出一个数m 问每个连续的m中的最小\最大值是多少,并输出 思路 使用单调队列来写,拿最小值来举例 要求区间 ...

  8. POJ 1488 Tex Quotes --- 水题

    POJ 1488 题目大意:给定一篇文章,将它的左引号转成 ``(1的左边),右引号转成 ''(两个 ' ) 解题思路:水题,设置一个bool变量标记是左引号还是右引号即可 /* POJ 1488 T ...

  9. poj 2369(置换群)

    Permutations Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3041   Accepted: 1641 Desc ...

随机推荐

  1. Oracle 三大范式

    范式:数据库设计对数据的存储性能,还有开发人员对数据的操作都有莫大的关系.所以建立科学的,规范的的数据库是需要满足一些.规范的来优化数据数据存储方式.在关系型数据库中这些规范. 第一范式:数据库表中的 ...

  2. loj 10000 活动安排

    ****这是一个贪心题,把结束时间排个序,然后留出更多的时间给后面的活动. #include<cstdio> #include<cstring> #include<alg ...

  3. Units about ASM

    1.ASM Striping and Mirroring:ASM supports two levels of striping: fine striping and coarse striping. ...

  4. 解决linux环境下qt groupbox 边框不显示问题

    ps:实践是检验真理的唯一标准真的是没错,以为很简单一件事情,往往被自己搞的很复杂,这里记录下 在windows环境中Qt创建一个groupbox自动显示边框, 效果如下 然而在linux环境中Qt创 ...

  5. CentOS配置教程

    1.配置网卡开机自动启动 查看/etc/sysconfig/network-scripts/ifcfg-eth0的初始内容: cat /etc/sysconfig/network-scripts/if ...

  6. win10系统office2010每次打开总是出现配置进度

  7. linux下top命令参数详解

    top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,类似于Windows的任务管理器.下面详细介绍它的使用方法. 内存信息.内容如下: Mem: 191272k to ...

  8. POJ 1088 滑雪(记忆化搜索+dp)

    POJ 1088 滑雪 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 107319   Accepted: 40893 De ...

  9. python之路 ---计算机硬件基础

    计算机(computer)俗称电脑,是现代一种用于高速计算的电子计算机器,可以进行数值计算,又可以进行逻辑计算,还具有存储记忆功能.是能够按照程序运行,自动.高速处理海量数据的现代化智能电子设备.一个 ...

  10. iframe子父页面函数互相调用

    1.iframe子页面调用父页面js函数 子页面调用父页面函数只需要写上window.praent就可以了.比如调用a()函数,就写成: window.parent.a();  子页面取父页面中的标签 ...