Problem Description
Give you an array A[1..n],you need to calculate how many tuples (i,j,k) satisfy that (i<j<k) and ((A[i] xor A[j])<(A[j] xor A[k]))

There are T test cases.

1≤T≤20

1≤∑n≤5∗105

0≤A[i]<230

 
Input
There is only one integer T on first line.

For each test case , the first line consists of one integer n ,and the second line consists of n integers which means the array A[1..n]

 
Output
For each test case , output an integer , which means the answer.
 
Sample Input
1
5
1 2 3 4 5
 
Sample Output
6
 
启发博客:http://blog.csdn.net/dormousenone/article/details/76570172
摘:

利用字典树维护前 k-1 个数。当前处理第 k 个数。

显然对于 k 与 i 的最高不相同位 kp 与 ip :

当 ip=0 , kp=1 时,该最高不相同位之前的 ihigher=khigher 。则 jhigher 可以为任意数,均不对 i, k 更高位(指最高不相同位之前的高位,后同)的比较产生影响。而此时 jp 位必须为 0 才可保证不等式 (Ai⊕Aj)<(Aj⊕Ak) 成立。

当 ip=1,kp=0 时,jp 位必须为 1 ,更高位任意。

故利用数组 cnt[31][2] 统计每一位为 0 ,为 1 的有多少个(在前 K-1 个数中)。在字典树插入第 k 个数时,同时统计最高不相同位,即对于每次插入的 p 位为 num[p] (取值 0 或 1),在同父节点对应的 1-num[p] 为根子树的所有节点均可作为 i 来寻找 j 以获取对答案的贡献。其中又仅要求 jp 与 ip (ip 值即 1-num[p]) 相同,故 jp 有 cnt[p][ 1-num[p] ] 种取值方案。

但是,同时需要注意 i 与 j 有在 A 数组的先后关系 (i<j) 需要保证。故在字典树中额外维护一个 Ext 点,记录将每次新加入的点与多少原有点可构成 i, j 关系。在后续计算贡献时去掉。

其余详见代码注释。

 #include <iostream>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<map>
#include<vector>
#include<cmath>
#include<cstring>
using namespace std;
long long ans1,ans2;
int num[];//每一个数字的二进制转化
int cnt[][];//cnt[i][j]记录全部插入数字第i位为0、1分别的数字 struct trie
{
trie* next[];
int cnt,ext;
trie()
{
next[]=NULL;
next[]=NULL;
cnt=;//拥有当前前缀的数字个数
ext=;//
}
}; void calc(trie* tmp,long long c)
{
ans1+=tmp->cnt*(tmp->cnt-)/;
ans2+=(c-tmp->cnt)*tmp->cnt-tmp->ext;
} void insert(trie* r)
{
int i;
for(i=;i<=;i++)
{
if(r->next[num[i]]==NULL)
r->next[num[i]]= new trie;
if(r->next[-num[i]]!=NULL)
calc(r->next[-num[i]],cnt[i][-num[i]]);
r=r->next[num[i]];
r->cnt++;
r->ext+=cnt[i][num[i]]-r->cnt;
//每个点存下同位同数不同父亲节点的数字个数且序号比本身小的
}
return ;
} int main()
{
int T,n,tmp;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
trie root;
ans1=;//i,j选自同父亲节点
ans2=;//i选自同父亲节点,j选择同位不同数不同父亲节点
memset(cnt,,sizeof(cnt));
while(n--)
{
scanf("%d",&tmp);
for(int i=;i>=;i--)//这样可以保证不同大小的数字前缀都为0
{
num[i]=tmp%;
cnt[i][num[i]]++;
tmp/=;
}
insert(&root);
}
printf("%lld\n",ans1+ans2);
}
return ;
}

HDU 6059 17多校3 Kanade's trio(字典树)的更多相关文章

  1. hdu6059 Kanade's trio 字典树+容斥

    转自:http://blog.csdn.net/dormousenone/article/details/76570172 /** 题目:hdu6059 Kanade's trio 链接:http:/ ...

  2. HDU 6060 17多校3 RXD and dividing(树+dfs)

    Problem Description RXD has a tree T, with the size of n. Each edge has a cost.Define f(S) as the th ...

  3. HDU 6140 17多校8 Hybrid Crystals(思维题)

    题目传送: Hybrid Crystals Problem Description > Kyber crystals, also called the living crystal or sim ...

  4. HDU 6143 17多校8 Killer Names(组合数学)

    题目传送:Killer Names Problem Description > Galen Marek, codenamed Starkiller, was a male Human appre ...

  5. HDU 6045 17多校2 Is Derek lying?

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=6045 Time Limit: 3000/1000 MS (Java/Others)    Memory ...

  6. HDU 6124 17多校7 Euler theorem(简单思维题)

    Problem Description HazelFan is given two positive integers a,b, and he wants to calculate amodb. Bu ...

  7. HDU 3130 17多校7 Kolakoski(思维简单)

    Problem Description This is Kolakosiki sequence: 1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1……. This seq ...

  8. HDU 6038 17多校1 Function(找循环节/环)

    Problem Description You are given a permutation a from 0 to n−1 and a permutation b from 0 to m−1. D ...

  9. HDU 6034 17多校1 Balala Power!(思维 排序)

    Problem Description Talented Mr.Tang has n strings consisting of only lower case characters. He want ...

随机推荐

  1. 2017-4-18/缓存、CDN

    1. 什么是缓存,为什么要用缓存? 缓存就是数据交换的缓冲区(称作Cache),是存贮数据(使用频繁的数据)的临时地方.当用户查询数据,首先在缓存中寻找,如果找到了则直接执行.如果找不到,则去数据库中 ...

  2. 通过cassandra-cli客户端了解cassandra的内部数据结构

    和cassandra数据库交互的方式有两种,一种是通过类似于cassandra-cli命令的thrift api,或者通过cassandra提供的cql(cassandra query lanugag ...

  3. hibernate建表默认为UTF-8编码

    一.问题: hibernate自动建表的编码应该是数据默认的编码格式,一般也不是utf-8.所以想要建表默认的编码是UTF-8,应该怎么做呢? 二.解决方法: 拿mysql举例: (一).修改hibe ...

  4. [luogu P3195] [HNOI2008]玩具装箱TOY

    [luogu P3195] [HNOI2008]玩具装箱TOY 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆, ...

  5. Vue 项目骨架屏注入与实践

    作为与用户联系最为密切的前端开发者,用户体验是最值得关注的问题.关于页面loading状态的展示,主流的主要有loading图和进度条两种.除此之外,越来越多的APP采用了“骨架屏”的方式去展示未加载 ...

  6. HashSet和ArrayList有什么区别

    hashSet存储的是无序,不可重复,无索引 ArrayList存储的是有序,可重复,有索引

  7. poj1002 大数的 n的m次

    import java.math.BigDecimal; import java.util.Scanner; public class Main { public static void main(S ...

  8. spring boot cloud

    eclipse spring boot 项目创建 https://www.cnblogs.com/shuaihan/p/8027082.html https://www.cnblogs.com/LUA ...

  9. Scanner类完成用户键盘录入

    l  Scanner类 Scanner类是引用数据类型的一种,我们可以使用该类来完成用户键盘录入,获取到录入的数据. Scanner使用步骤: 导包:import java.util.Scanner; ...

  10. vue 添加vux

    1.命令添加vux npm install vux --save 2.在build/webpack.base.conf.js中配置 const vuxLoader = require('vux-loa ...