http://acm.hdu.edu.cn/showproblem.php?pid=1069

Monkey and Banana

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 18668    Accepted Submission(s): 9934

Problem Description
A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.

The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height.

They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked.

Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.

 
Input
The input file will contain one or more test cases. The first line of each test case contains an integer n,
representing the number of different blocks in the following data set. The maximum value for n is 30.
Each of the next n lines contains three integers representing the values xi, yi and zi.
Input is terminated by a value of zero (0) for n.
 
Output
For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height".
 
Sample Input
1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
 
Sample Output
Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342
题目大意:给N种类型的长方体【每种任意多个】,摆放时要求上面的那个长方体的长和宽要严格小于下面的长和宽,求摆放方案中最高有多高。
题目分析:首先每个长方体有三种摆放的方式,而每个摆放方式都有摆与不摆两种方案,这就类似于最长上升子序列问题中某个数字取或者不取使用动态规划做,即DP【I】表示在第I种方案的木块被选择的情况下的最高高度
注意:为了能正确地进行迭代更新,应该先将木块进行一次排序,按底面积的大小排序,然后从面积大的 I  开始更新迭代
【这点很重要!因为只有底层得到正确的最大的值,后面的更新才有意义】

【HDOJ1069】【动态规划】的更多相关文章

  1. HDOJ-1069(动态规划+排序+嵌套矩形问题)

    Monkey and Banana HDOJ-1069 这里实际是嵌套矩形问题的变式,也就是求不固定起点的最长路径 动态转移方程为:dp[i]=max(dp[j]+block[i].h|(i,j)∈m ...

  2. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  3. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  4. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  5. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  6. C#动态规划查找两个字符串最大子串

     //动态规划查找两个字符串最大子串         public static string lcs(string word1, string word2)         {            ...

  7. C#递归、动态规划计算斐波那契数列

    //递归         public static long recurFib(int num)         {             if (num < 2)              ...

  8. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  9. 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划

    [BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...

随机推荐

  1. OO第二次课程总结分析

    前几次的作业都是单线程的,总体来说和以前的思维模式和调试等存在着一定的挂钩,在设计上整体难度还不算太大,这次开始了多线程编程,难度可以说是质的飞跃,构思上所考虑的不止一点两点,在整体的基础上还要考虑线 ...

  2. 二:通过VirtualBox+Vagrant创建一个centos的虚拟机:

    官网安装VirtualBox及Vagrant. 下载centos7,添加到vagrant中. http://e-proxy.yfb.sunline.cn/download/vagrant/centos ...

  3. sass 变量的声明 嵌套

    sass 的默认变量一般是用来设置默认值,然后根据需求来覆盖的,覆盖的方式也很简单,只需要在默认变量之前重新声明下变量即可. $baseLineHeight: 2; $baseLineHeight: ...

  4. L253 Work and Pleasure

    To be really happy and really safe, one ought to have at least two or three hobbies, and they must a ...

  5. 用StringHelper.Split分解字符串

    StringHelper提供了大量的方法,从而用链试写法处理字符串,实现对字符串的各种操作.比如: var s1,s2:string; begin s1:='abcdefg'; s2:=s1.subs ...

  6. Java Editplus编译环境配置

    java jdk 安装win10 配置:此电脑--属性--高级系统设置--环境变量--系统变量-->新建--变量名--JAVA_HOME 变量值--浏览目录--jdk安装路径jdk...--&g ...

  7. 下载从网页里面提取出来的图片(将url指向的图片下载并保存、从命名)

    import os #创建文件夹 from urllib import request #下载图片 if not os.path.exists('文件夹名字'): #创建文件夹名字 os.mkdir( ...

  8. 栈溢出原理与 shellcode 开发

     ESP:该指针永远指向系统栈最上面一个栈帧的栈顶  EBP:该指针永远指向系统栈最上面一个栈帧的底部 01  修改函数返回地址 #include<stdio.h> #include< ...

  9. Win7+Ubuntu双系统时间不一致

    转自:http://blog.sina.com.cn/s/blog_55546df90100xkf3.html 最近装了ubuntu和win7双系统,但是发现每次进入win7后时间总是不对,总是比当地 ...

  10. Sphinx将python代码注释生成文档

    安装 使用pip进行安装: pip install sphinx 初始化 进入你代码所在的目录,输入: sphinx-quickstart 下图:PRD是代码所在目录,生成的文档保存目录设成doc  ...