【HDOJ1069】【动态规划】
http://acm.hdu.edu.cn/showproblem.php?pid=1069
Monkey and Banana
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 18668 Accepted Submission(s): 9934
The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height.
They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked.
Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.
representing the number of different blocks in the following data set. The maximum value for n is 30.
Each of the next n lines contains three integers representing the values xi, yi and zi.
Input is terminated by a value of zero (0) for n.
【HDOJ1069】【动态规划】的更多相关文章
- HDOJ-1069(动态规划+排序+嵌套矩形问题)
Monkey and Banana HDOJ-1069 这里实际是嵌套矩形问题的变式,也就是求不固定起点的最长路径 动态转移方程为:dp[i]=max(dp[j]+block[i].h|(i,j)∈m ...
- 增强学习(三)----- MDP的动态规划解法
上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...
- 简单动态规划-LeetCode198
题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...
- 动态规划 Dynamic Programming
March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...
- 动态规划之最长公共子序列(LCS)
转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...
- C#动态规划查找两个字符串最大子串
//动态规划查找两个字符串最大子串 public static string lcs(string word1, string word2) { ...
- C#递归、动态规划计算斐波那契数列
//递归 public static long recurFib(int num) { if (num < 2) ...
- 动态规划求最长公共子序列(Longest Common Subsequence, LCS)
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...
- 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划
[BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...
随机推荐
- 基础数据类型的坑和集合及深浅copy
一.基础数据类型的坑: 元组: 如果一个元组中,只有一个元素,且没有逗号,则该"元组"与里面的数据的类型相同. # 只有一个数据,且没有逗号的情况: print(tu1,type( ...
- spark使用正则表达式读入多个文件
String dir = "s3a://example/";String currentDir = dir + "{1[5-9],2[01]}/*.txt";J ...
- excle
1.固定某行列 如果要使一行不动,将光标定位于A2单击中,单击菜单"窗口----冻结窗格" 一行一列的,光标定位于B2单元格中,其它的以此类推 2.自动排序号 自动排序号,就是在某 ...
- 根据访问ip的地区跳转到指定地址
<script type="text/javascript" src="http://ip.ws.126.net/ipquery"></scr ...
- Suffix树,后缀树
body, table{font-family: 微软雅黑; font-size: 13.5pt} table{border-collapse: collapse; border: solid gra ...
- Android : 跟我学Binder --- (1) 什么是Binder IPC?为何要使用Binder机制?
目录: Android : 跟我学Binder --- (1) 什么是Binder IPC?为何要使用Binder机制? Android : 跟我学Binder --- (2) AIDL分析及手动实现 ...
- delete请求
Action(){ int HttpRetCode; //定义一个变量,用于接收HTTP返回的状态码 web_add_header("Session-Id", "2e25 ...
- Serial interface (RS-232)
转自:http://www.fpga4fun.com/SerialInterface.html A serial interface is a simple way to connect an FPG ...
- 界面控件DevExpress发布v18.2.5|附下载
DevExpress Universal Subscription(又名DevExpress宇宙版或DXperience Universal Suite)是全球使用广泛的.NET用户界面控件套包,De ...
- git相关知识点
git add 和 git stage 有什么区别: 工作区(Working Directory).暂存区(Stage)和历史记录区(History)以及转换关系不能少: git stage 是 gi ...