【HDOJ1069】【动态规划】
http://acm.hdu.edu.cn/showproblem.php?pid=1069
Monkey and Banana
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 18668 Accepted Submission(s): 9934
The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height.
They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked.
Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.
representing the number of different blocks in the following data set. The maximum value for n is 30.
Each of the next n lines contains three integers representing the values xi, yi and zi.
Input is terminated by a value of zero (0) for n.
【HDOJ1069】【动态规划】的更多相关文章
- HDOJ-1069(动态规划+排序+嵌套矩形问题)
Monkey and Banana HDOJ-1069 这里实际是嵌套矩形问题的变式,也就是求不固定起点的最长路径 动态转移方程为:dp[i]=max(dp[j]+block[i].h|(i,j)∈m ...
- 增强学习(三)----- MDP的动态规划解法
上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...
- 简单动态规划-LeetCode198
题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...
- 动态规划 Dynamic Programming
March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...
- 动态规划之最长公共子序列(LCS)
转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...
- C#动态规划查找两个字符串最大子串
//动态规划查找两个字符串最大子串 public static string lcs(string word1, string word2) { ...
- C#递归、动态规划计算斐波那契数列
//递归 public static long recurFib(int num) { if (num < 2) ...
- 动态规划求最长公共子序列(Longest Common Subsequence, LCS)
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...
- 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划
[BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...
随机推荐
- IDEA教程之导入maven项目
通过从网上的开源项目下载源码,一般都是maven管理的项目,此类项目可以通过导入快捷运行项目,如图为下载的一个项目: 2 打开IDEA,点击第二个选项“Import Porject”,然后选择源码根目 ...
- Resharper插件的使用
一.Resharper设置 1.1 智能提示 安装完毕后,IDE 的智能提示(Intellisense)便会默认使用 Resharper 的提示,不知道为什么,我一直不太喜欢它的提示.改过来,是在Op ...
- [转载] JAVA面试题和项目面试核心要点精华总结(想进大公司必看)
JAVA面试题和项目面试核心要点精华总结(想进大公司必看) JAVA面试题和项目面试核心要点精华总结(想进大公司必看)
- zookeeper:springboot+dubbo配置zk集群并测试
1.springboot配置zk集群 1.1:非主从配置方法 dubbo: registry: protocol: zookeeper address: ,, check: false 1.2:主从配 ...
- Django 数据库连接配置(Oracle、Mysql)
一.Django Oracle连接配置 DATABASES = { 'default': { 'ENGINE': 'django.db.backends.oracle', 'NAME': 'DEMO' ...
- day35 数据库介绍和初识sql
今日内容: 1. 代码: 简易版socketsever 2.数据库(mysql)简单介绍和分类介绍 3.mysql root修改密码 4.修改字符集编码 5.初识sql语句 1.简易版socketse ...
- import 语句
声明package的语句必须在java类的有效代码第一行,所import语句要放在package 声明语句之后. import的语法格式为: import+空格+类全限定名+: 该语句的作用是, ...
- 完全卸载vs2013 2015
/uninstall /force 解压你的vs2013的安装包(iso格式). cd到解压后的文件夹 vs_ultimate.exe /uninstall /force 或者创建一个快捷方式到桌面 ...
- JavaScript示例
<!DOCTYPE html> <html> <head> <title>单击按钮事件示例</title> <script langu ...
- Chrome插件-网页版BusHound
Chrome插件-网页版BusHound