[AGC025B]RGB Coloring
[AGC025B]RGB Coloring
题目大意:
有\(n(n\le3\times10^5)\)个格子,每个格子可以选择涂成红色、蓝色、绿色或不涂色,三种颜色分别产生\(a,b,a+b(a,b\le3\times10^5)\)的收益。问有多少种涂色方案使得总收益为\(k(k\le18\times10^{10})\)。
思路:
涂绿色就相当于同时涂了红色和蓝色,因此枚举红色出现次数\(i\)和蓝色出现次数\(j\)。答案就是\(\displaystyle\sum_{\substack{0\le i,j\le n\\ai+bj\le k}}{n\choose i}{n\choose j}\)。
时间复杂度\(\mathcal O(n)\)。
源代码:
#include<cstdio>
#include<cctype>
#include<algorithm>
typedef long long int64;
inline int64 getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int64 x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=3e5+1,mod=998244353;
int fac[N],ifac[N];
void exgcd(const int &a,const int &b,int &x,int &y) {
if(!b) {
x=1,y=0;
return;
}
exgcd(b,a%b,y,x);
y-=a/b*x;
}
inline int inv(const int &x) {
int ret,tmp;
exgcd(x,mod,ret,tmp);
return (ret%mod+mod)%mod;
}
inline int power(int a,int k) {
int ret=1;
for(;k;k>>=1) {
if(k&1) ret=(int64)ret*a%mod;
a=(int64)a*a%mod;
}
return ret;
}
inline int C(const int &n,const int &m) {
return (int64)fac[n]*ifac[m]%mod*ifac[n-m]%mod;
}
int main() {
int n=getint(),a=getint(),b=getint();
int64 k=getint();
for(register int i=fac[0]=1;i<=n;i++) {
fac[i]=(int64)fac[i-1]*i%mod;
}
ifac[n]=inv(fac[n]);
for(register int i=n;i>=1;i--) {
ifac[i-1]=(int64)ifac[i]*i%mod;
}
int ans=0;
for(register int i=0;i<=n&&(int64)a*i<=k;i++) {
if((k-(int64)a*i)%b!=0) continue;
const int64 j=(k-(int64)a*i)/b;
if(j>n) continue;
(ans+=(int64)C(n,i)*C(n,j)%mod)%=mod;
}
printf("%d\n",ans);
return 0;
}
[AGC025B]RGB Coloring的更多相关文章
- AtCoder Grand Contest 025 B - RGB Coloring
B - RGB Coloring 求ax + by = k (0<=x<=n && 0<=y<=n)的方案数,最后乘上C(n, x)*C(n,y) 代码: #i ...
- AGC 025 B - RGB Coloring
B - RGB Coloring Time limit : 2sec / Memory limit : 1024MB Score : 700 points Problem Statement Taka ...
- 【AtCoder】AGC025题解
A - Digits Sum 枚举即可 代码 #include <bits/stdc++.h> #define fi first #define se second #define pii ...
- AGC025简要题解
AGC025简要题解 B RGB Coloring 一道简单题,枚举即可. C Interval Game 考虑可以进行的操作只有两种,即左拉和右拉,连续进行两次相同的操作是没有用的. 左拉时肯定会选 ...
- 【AGC025B】RGB Color
[AGC025B]RGB Color 题面描述 Link to Atcoder Link to Luogu Takahashi has a tower which is divided into \( ...
- RGB,CMYK,HSB各种颜色表示的转换 C#语言
Introduction Why an article on "colors"? It's the same question I asked myself before writ ...
- html5中canvas的使用 获取鼠标点击页面上某点的RGB
1.html5中的canvas在IE9中可以跑起来.在IE8则跑不起来,这时候就需要一些东西了. 我推荐这种方法,这样显得代码不乱. <!--[if lt IE9]> <script ...
- 【视频处理】YUV与RGB格式转换
YUV格式具有亮度信息和色彩信息分离的特点,但大多数图像处理操作都是基于RGB格式. 因此当要对图像进行后期处理显示时,需要把YUV格式转换成RGB格式. RGB与YUV的变换公式如下: YUV(25 ...
- Applying vector median filter on RGB image based on matlab
前言: 最近想看看矢量中值滤波(Vector median filter, VMF)在GRB图像上的滤波效果,意外的是找了一大圈却发现网上没有现成的code,所以通过matab亲自实现了一个,需要学习 ...
随机推荐
- L0/L1/L2范数(转载)
一.首先说一下范数的概念: 向量的范数可以简单形象的理解为向量的长度,或者向量到零点的距离,或者相应的两个点之间的距离. 向量的范数定义:向量的范数是一个函数||x||,满足非负性||x|| > ...
- 通过全备+binlog_server同步恢复被drop的库或表
MySQL 中drop 等高危误操作后恢复方法 实验目的: 本次实验以恢复drop操作为例,使用不同方法进行误操作的数据恢复. 方法: 利用master同步 :伪master+Binlog+同步(本文 ...
- oracle巡检脚本备份
重做日志生成情况,一天生成日志大小:select round(sum(blocks*block_size)/1024/1024/1024,2) BLOCK from v\$archived_log w ...
- windows系统下安装tomcat及配置
1.安装测试 1.安装 推荐使用免安装版的Tomcat(放在没有中文和空格的目录下),前提是已经安装了JDK并配置了环境变量. 2.测试 双击startup.bat,浏览器输入url:localhos ...
- Android:视频(VideoView/MediaPlayer)
Android之视频播放 VideoView if(android.os.Environment.getExternalStorageState().equals(android.os.Environ ...
- 图解修改Maven本地仓库存储路径
1 从Maven中心仓库下载到本地的jar包的默认存放在"${user.home}/.m2/repository"中,${user.home}表示当前登录系统的用户目录(如&quo ...
- Android 的网络编程
android的网络编程分为2种:基于socket的,和基于http协议的. 基于socket的用法 服务器端: 先启动一个服务器端的socket ServerSocket svr = new ...
- 数论知识点总结(noip范围)
数论知识点: 约数个数和约数和公式(例题:POJ1845 分治思想): 质因数分解 p1^k1xp2^k2xp3^k3...pn^kn 约数个数和:(1+k1)(1+k2)...(1+kn) 所有约数 ...
- MarkDown常用语法及word转MarkDown
介绍 Markdown 的目标是实现「易读易写」. 可读性,无论如何,都是最重要的.一份使用 Markdown 格式撰写的文件应该可以直接以纯文本发布,并且看起来不会像是由许多标签或是格式指令所构成. ...
- python 全栈开发,Day91(Vue实例的生命周期,组件间通信之中央事件总线bus,Vue Router,vue-cli 工具)
昨日内容回顾 0. 组件注意事项!!! data属性必须是一个函数! 1. 注册全局组件 Vue.component('组件名',{ template: `` }) var app = new Vue ...