看到一段对主题模型的总结,感觉很精辟:

如何找到文本隐含的主题呢?常用的方法一般都是基于统计学的生成方法。即假设以一定的概率选择了一个主题,然后以一定的概率选择当前主题的词。最后这些词组成了我们当前的文本。所有词的统计概率分布可以从语料库获得,具体如何以“一定的概率选择”,这就是各种具体的主题模型算法的任务了。lda也是采取的这种思想。

大部分对LDA的解释都是通过LDA生成文档的思路,而我们一般是给定文档,利用LDA推测该文档的话题分布。我在这里先讲一下生成文档的过程,再讲我们普遍用到的代码中推测话题的过程:

1.文档生成

我比较关注实用性,又不是很喜欢那么多的数学公式,所以主要先把个人感觉最方便理解的解释分享给大家看看~反正我看了下边的解释脑子里可以有LDA原理的整个思路。

联系右上角给出的图,步骤为从上到下、从左到右,先得到一个主题Zij=k,再得到第k个主题的词分布φk,继而生成文档的词汇w,循环该图流程,生成整篇文档。

过程中涉及到多种分布;

共轭分布:在贝叶斯的理论体系中,如果先验概率分布和后验概率分布满足同样的分布律的话,就说先验分布和后验分布是共轭分布,同时,先验分布又叫做似然函数的共轭先验分布。大白话来说就是:如果一个概率分布Z乘以一个分布Y之后的分布仍然是Z,那么就是共轭分布。二项分布的共轭先验分布是Beta分布,多项分布的共轭先验分布是Dirichlet分布。

LDA中涉及的   多项分布和Dirichlet分布,LDA中词和主题服从多项式分布,两者的参数服从Dirichlet分布。我认为引入共轭分布主要是为了方便计算整个过程中的参数

2.通过已知文档推测所含话题分布

通过LDA推测话题分布时,

1)初始先随机给文本中的每个词(喂进去的词需要经过分词、通过dictionary每个词对应一个id,再将id与该词对应的tf-idf值或词频关联存储为一个矩阵)分配主题z0(初始设置了要得到的话题个数k,为每个词分配话题id),也给定了α和β,控制了主题分布和词分布;

2)然后统计词t属于主题z的数量以及每个文档m下出现的主题z的数量;通过除了当前词w以外其他所有词所属的主题分布估计当前词分配各个主题的概率,即计算得到词w对应各主题的概率p(1,2,....k)=(p1,p2,.....pk)
3)当得到当前词属于所有主题z的概率分布后,根据这个概率分布为该词采样(不是取最大值)一个新的主题。
4)用同样方法更新下一个词的主题,直到发现每个文档的主题分布和每个主题的词分布收敛(应该是文档中出现的所有同一个词计算得到的所属主题分布都一致),算法终止,输出待估计的参数θ和φ,同时每个单词的主题Zmn也可以得到。

实际中应用会设置最大迭代次数,每一次计算的公式称为Gibbs updating rule

这样就解释了内部推测话题的过程。其中涉及的数学计算过程如下(我比较懒,直接贴了邹博视频的式子啦,如果对大家有用希望能点个赞之类的啦~~~~~~~~~):

另外,想起来在用LDA做实验的过程中还找到了百度开源的一个项目。关于主题模型的项目。文档主题推断工具、语义匹配计算工具以及基于工业级语料训练的三种主题模型:Latent Dirichlet Allocation(LDA)、SentenceLDA 和Topical Word Embedding(TWE)  github链接:https://github.com/baidu/Familia

3.通过gensim中LDA可以实现的功能

1)得到该文档的话题分布及相应概率

2)计算各文档相似度

dictionary = corpora.Dictionary.load('dictionary.dict')

corpus = corpora.MmCorpus("corpus.mm")

lda = models.LdaModel.load("model.lda")

index = similarities.MatrixSimilarity(lda[corpus])

index.save("simIndex.index")

docname = "docs/the_doc.txt" doc = open(docname, 'r').read()

vec_bow = dictionary.doc2bow(doc.lower().split())

vec_lda = lda[vec_bow] sims = index[vec_lda]

sims = sorted(enumerate(sims), key=lambda item: -item[1])
参考链接:https://blog.csdn.net/qq_25073545/article/details/79782066

3)通过PYLDAVIS模块将主题可视化

试了一下该项目是可以直接用的,只不过只能在LINUX下使用,可以直接按github上给出的步骤应用,效果还不错~~~

LDA学习小记的更多相关文章

  1. mongodb入门学习小记

    Mongodb 简单入门(个人学习小记) 1.安装并注册成服务:(示例) E:\DevTools\mongodb3.2.6\bin>mongod.exe --bind_ip 127.0.0.1 ...

  2. javascript学习小记(一)

    大四了,课少了许多,突然之间就不知道学什么啦.整天在宿舍混着日子,很想学习就是感觉没有一点头绪,昨天看了电影激战.这种纠结的情绪让我都有点喘不上气啦!一点要找点事情干了,所以决定找个东西开始学习.那就 ...

  3. js 正则学习小记之匹配字符串

    原文:js 正则学习小记之匹配字符串 今天看了第5章几个例子,有点收获,记录下来当作回顾也当作分享. 关于匹配字符串问题,有很多种类型,今天讨论 js 代码里的字符串匹配.(因为我想学完之后写个语法高 ...

  4. js 正则学习小记之左最长规则

    原文:js 正则学习小记之左最长规则 昨天我在判断正则引擎用到的方法是用 /nfa|nfa not/ 去匹配 "nfa not",得到的结果是 'nfa'.其实我们的本意是想得到整 ...

  5. js 正则学习小记之NFA引擎

    原文:js 正则学习小记之NFA引擎 之前一直认为自己正则还不错,在看 次碳酸钴,Barret Lee 等大神都把正则玩的出神入化后发现我只是个战五渣.  求抱大腿,求大神调教. 之前大致有个印象,正 ...

  6. js 正则学习小记之匹配字符串优化篇

    原文:js 正则学习小记之匹配字符串优化篇 昨天在<js 正则学习小记之匹配字符串>谈到 个字符,除了第一个 个,只有 个转义( 个字符),所以 次,只有 次成功.这 次匹配失败,需要回溯 ...

  7. CSS学习小记

    搜狗主页页面CSS学习小记 1.边框的处理   要形成上图所示的布局效果,即,点选后,导航下面的边框不显示而其他的边框形成平滑的形状.相对于把导航的下面边框取消然后用空白覆盖掉下面搜索栏的边框比较而言 ...

  8. Gcd&Exgcd算法学习小记

    Preface 对于许多数论问题,都需要涉及到Gcd,求解Gcd,常常使用欧几里得算法,以前也只是背下来,没有真正了解并证明过. 对于许多求解问题,可以列出贝祖方程:ax+by=Gcd(a,b),用E ...

  9. logstash 学习小记

    logstash 学习小记 标签(空格分隔): 日志收集 Introduce Logstash is a tool for managing events and logs. You can use ...

随机推荐

  1. java.lang.NoSuchFieldError: No static field abc_ic_ab_back_mtrl_am_alpha of type I in class Landroid/support/v7/appcompat/R$drawable

    出现java.lang.NoSuchFieldError: No static field abc_ic_ab_back_mtrl_am_alpha of type I in class Landro ...

  2. ajax实战用法详解

    谦虚使人进步,总结使人提高! 以下5个方法执行一般Ajax请求的简短形式,在处理复杂的Ajax请求时应该使用jQuery.ajax() 1.load(url,[data],[callback])载入远 ...

  3. php 页面间传递数据

    b.php <?php function getClientIP() { if (getenv("HTTP_CLIENT_IP")) $ip = getenv("H ...

  4. java-信息安全(十四)-初探SSL

    原文地址 http://snowolf.iteye.com/blog/397693 我们需要构建一个由CA机构签发的有效证书,这里我们使用上文中生成的自签名证书zlex.cer     这里,我们将证 ...

  5. php memcached 扩展

    php_memcache.dll下载地址:http://windows.php.net/downloads/pecl/releases/memcache/3.0.8/ 查看php线程:phpinfo ...

  6. Git 删除提交记录

    .Checkout git checkout --orphan latest_branch 2. Add all the files git add -A 3. Commit the changes ...

  7. [Tensorflow] Cookbook - CNN

    Convolutional Neural Networks (CNNs) are responsible for the major breakthroughs in image recognitio ...

  8. ASP.NET MVC 4 (十二) Web API

    Web API属于ASP.NET核心平台的一部分,它利用MVC框架的底层功能方便我们快速的开发部署WEB服务.我们可以在常规MVC应用通过添加API控制器来创建web api服务,普通MVC应用程序控 ...

  9. AnalyticDB - 分析型数据库

    https://yq.aliyun.com/teams/31?spm=5176.7937365.1120968.ee1.78505692UL9DhG 分析型数据库(AnalyticDB)是一种高并发低 ...

  10. Linux设备驱动剖析之Input(二)

    分别是总线类型.厂商号.产品号和版本号. 1156行,evbit,设备支持的事件类型的位图,每一位代表一种事件,比如EV_KEY.EV_REL事件等等.BITS_TO_LONGS(nr)是一个宏,假设 ...