1. 简单列子:

一个损失函数L与参数x的关系表示为:

则 加上L2正则化,新的损失函数L为:(蓝线)

最优点在黄点处,x的绝对值减少了,但依然非零。

如果加上L1正则化,新的损失函数L为:(粉线)

最优点为红点,变为0,L1正则化让参数的最优值变为0,更稀疏。

L1在江湖上人称Lasso,L2人称Ridge。

两种正则化,能不能将最优的参数变为0,取决于最原始的损失函数在0点处的导数,如果原始损失函数在0点处的导数不为0,则加上L2正则化之后(+2Cx),导数依然不为0。而加上L1正则化(导数为-C),如果C大于原先损失函数在0点处的导数的绝对值,x=0就变成了极小值。

2. 概念上理解:

加上正则化约束,要达到最小化损失函数,就是不能随心所欲的取参数的值了,要保证在满足的限制之内。假设有一个参数,L2的限制条件为|w|^2<c,为上图的红线,而L1的限制条件为|w|<c; L1 有角,L2无角

对于L1和L2规则化的代价函数来说,我们可以写成以下形式:

也就是说,我们将模型空间限制在w的一个L1-ball 中。为了便于可视化,我们考虑两维的情况,在(w1, w2)平面上可以画出目标函数的等高线,而约束条件则成为平面上半径为C的一个 norm ball 。等高线与 norm ball 首次相交的地方就是最优解:

可以看到,L1-ball 与L2-ball 的不同就在于L1在和每个坐标轴相交的地方都有“角”出现,而目标函数的测地线除非位置摆得非常好,大部分时候都会在角的地方相交。注意到在角的位置就会产生稀疏性,例如图中的相交点就有w1=0,而更高维的时候(想象一下三维的L1-ball 是什么样的?)除了角点以外,还有很多边的轮廓也是既有很大的概率成为第一次相交的地方,又会产生稀疏性。

相比之下,L2-ball 就没有这样的性质,因为没有角,所以第一次相交的地方出现在具有稀疏性的位置的概率就变得非常小了。这就从直观上来解释了为什么L1-regularization 能产生稀疏性,而L2-regularization 不行的原因了。

因此,一句话总结就是:L1会趋向于产生少量的特征,而其他的特征都是0,而L2会选择更多的特征,这些特征都会接近于0。Lasso在特征选择时候非常有用,而Ridge就只是一种规则化而已。

3. 概率上理解

如果认为数据是来自高斯密度函数,取对数后就剩一个平方项,这就是L2范式(数据来自高斯分布,应该在代价函数中加入数据先验的高斯密度函数---L2范数)

如果数据稀疏,认为来自于laplace分布,

laplace数据分布时稀疏的,laplace概率密度函数

去对数,剩下一个一次项就是L1范式。加入laplace先验作为正则项的代价函数,说明数据是稀疏的。

L2正则化相当于假设我们所求w的分布为高斯分布,L1对应的先验概率函数为拉普拉斯分布。 高斯分布对大w的概率低,对于小w的概率高,所以它限制w到一个小数,但不为0. 拉普拉斯分布对小w的概率低,希望逼近为0, 对于大w的概率比高斯分布高。

L1 更 容易稀疏化。

为什么正则化能防止过拟合:

过拟合表现在训练数据上的误差非常小,而在测试数据上误差反而增大。其原因一般是模型过于复杂,过分得去拟合数据的噪声和outliers. 正则化则是对模型参数添加先验,使得模型复杂度较小,对于噪声以及outliers的输入扰动相对较小。

我们相当于是给模型参数w 添加了一个协方差为1/alpha 的零均值高斯分布先验。 对于alpha =0,也就是不添加正则化约束,则相当于参数的高斯先验分布有着无穷大的协方差,那么这个先验约束则会非常弱,模型为了拟合所有的训练数据,w可以变得任意大不稳定。alpha越大,表明先验的高斯协方差越小,模型约稳定, 相对的variance也越小。

因此为了解决过度拟合,有以下两个办法。

&amp;lt;img src="https://pic3.zhimg.com/811f033c45950d743426b9e0d2ab9bce_b.png" data-rawwidth="772" data-rawheight="322" class="origin_image zh-lightbox-thumb" width="772" data-original="https://pic3.zhimg.com/811f033c45950d743426b9e0d2ab9bce_r.png"&amp;gt;

方法一:尽量减少选取变量的数量

具体而言,我们可以人工检查每一项变量,并以此来确定哪些变量更为重要,然后,保留那些更为重要的特征变量。至于,哪些变量应该舍弃,我们以后在讨论,这会涉及到模型选择算法,这种算法是可以自动选择采用哪些特征变量,自动舍弃不需要的变量。这类做法非常有效,但是其缺点是当你舍弃一部分特征变量时,你也舍弃了问题中的一些信息。例如,也许所有的特征变量对于预测房价都是有用的,我们实际上并不想舍弃一些信息或者说舍弃这些特征变量。

方法二:正则化

正则化中我们将保留所有的特征变量,但是会减小特征变量的数量级(参数数值的大小θ(j))。

优化目标,也就是说我们需要尽量减少代价函数的均方误差。因为,如果你在原有代价函数的基础上加上 1000 乘以 参数这一项 ,那么这个新的代价函数将变得很大,所以,当我们最小化这个新的代价函数时, 我们将使 参数 的值接近于 0,就像我们忽略了这个值一样。这种思路就是,如果我们的参数值对应一个较小值的话(参数值比较小),那么往往我们会得到一个形式更简单的假设。

L1比L2更稀疏的更多相关文章

  1. L1、L2范式及稀疏性约束

    L1.L2范式及稀疏性约束 假设需要求解的目标函数为: E(x) = f(x) + r(x) 其中f(x)为损失函数,用来评价模型训练损失,必须是任意的可微凸函数,r(x)为规范化约束因子,用来对模型 ...

  2. paper 126:[转载] 机器学习中的范数规则化之(一)L0、L1与L2范数

    机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化. ...

  3. 机器学习中的范数规则化之(一)L0、L1与L2范数(转)

    http://blog.csdn.net/zouxy09/article/details/24971995 机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http: ...

  4. L0、L1与L2范数、核范数(转)

    L0.L1与L2范数.核范数 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大 ...

  5. 机器学习中的范数规则化之(一)L0、L1与L2范数 非常好,必看

    机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化. ...

  6. 机器学习中的范数规则化-L0,L1和L2范式(转载)

    机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化. ...

  7. 大白话5分钟带你走进人工智能-第十五节L1和L2正则几何解释和Ridge,Lasso,Elastic Net回归

    第十五节L1和L2正则几何解释和Ridge,Lasso,Elastic Net回归 上一节中我们讲解了L1和L2正则的概念,知道了L1和L2都会使不重要的维度权重下降得多,重要的维度权重下降得少,引入 ...

  8. 大白话5分钟带你走进人工智能-第十四节过拟合解决手段L1和L2正则

                                                                               第十四节过拟合解决手段L1和L2正则 第十三节中, ...

  9. 4.机器学习——统计学习三要素与最大似然估计、最大后验概率估计及L1、L2正则化

    1.前言 之前我一直对于“最大似然估计”犯迷糊,今天在看了陶轻松.忆臻.nebulaf91等人的博客以及李航老师的<统计学习方法>后,豁然开朗,于是在此记下一些心得体会. “最大似然估计” ...

随机推荐

  1. MySQL_基础知识

    -----基础知识 1.什么是数据库?     数据库(Database)是按照数据结构来组织.存储和管理数据的仓库   2.什么是关系型数据库.主键,外键,索引分别是什么?        关系型数据 ...

  2. delphi获取一个窗口的所有子窗口(包括嵌套)

    unit Unit1; interface usesWindows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, ...

  3. HihoCoder - 1498 Diligent Robots

    There are N jobs to be finished. It takes a robot 1 hour to finish one job. At the beginning you hav ...

  4. MT【34】正余弦的正整数幂次快速表示成正余弦的线性组合

    问题:如何快速把$cos^4xsin^3x$表示成正弦,余弦的线性组合? 分析:利用牛顿二项式展开以下表达式: 再利用欧拉公式$e^{i\theta}=cos\theta+isin\theta$ 比如 ...

  5. 构建MySQL-Cluster

    Mysql Cluster概述与部署MySQL Cluster 是一种技术,该技术允许在无共享的系统中部署“内存中”数据库的 Cluster .通过无共享体系结构,系统能够使用廉价的硬件,而且对软硬件 ...

  6. PendingIntent的使用

    1, 构造intent Intent mIntent = new Intent("android.intent.action.MAIN"); ComponentName comp ...

  7. JAVA8给我带了什么——lambda表达

    这此年来我一直从事.NET的开发.对于JAVA我内心深处还是很向往的.当然这并不是说我不喜欢.NET.只是觉得JAVA也许才是笔者最后的归处.MK公司是以.NET起家的.而笔者也因为兄弟的原因转行.N ...

  8. 文件拷贝, 使用 BIO,NIO的对比,四种写法性能分析。

    测试环境: jdk 1.7 +  2G内存 测试代码基本上复制了: http://blog.csdn.net/tabactivity/article/details/9317143 1 2 3 4 5 ...

  9. 2018.10.2浪在ACM 集训队第二次测试赛

    2018.10.26 浪在ACM 集训队第二次测试赛 题目一览表 来源 考察知识点 A 1273 海港 NOIP 普及组 2016 差分数组+二分 B 1274 魔法阵     C 1267 金币   ...

  10. Codeforces Round #523 (Div. 2) C. Multiplicity

    C. Multiplicity 题目链接:https://codeforc.es/contest/1061/problem/C 题意: 给出一串数,问它的“好序列“有多少.好序列的定义是,首先是一个子 ...