http://mp.ofweek.com/vr/a745673021206

周四晚上11点,万众瞩目的世界杯终于开踢了,虽然意大利、荷兰、智利、中国(手动滑稽)等强队没能进入本届世界杯,但C罗梅西谁主沉浮、桑巴足球可否复仇、冰岛国足能走多远依旧看点十足。比起能在家门口看球的毛子和有闲钱闲功夫飞赴球场的球迷,大多数人还是只能囿于屏幕前。再加上顾及会遇到正面刚无敌的战斗民族,英国人还是坐在家中看球比较稳妥。

可若是在家吃着烧烤,喝着啤酒,换了大屏幕甚至改用投影仪,看球还不爽怎么办?新系统来帮你忙,给予你真·上帝视角的体验。

想象一下,如果可以在桌子地板上观看足球比赛的3D全息图,还能四处走动从不同视角观看球员,那该有多炫酷。想要获得此种体验的一种方法便是在球场各个方位布置多台同步摄像机,然后利用多视图几何技术重建场地和球员的3D模型。然而多摄像机的布置降低了它的适用性。今天要说的另一种方法则是利用单目视频完成对球场和球员的3D重建。在前一段时间,我们也提到过两个单目动捕方案:Vnect和MonoPertCap,就基本原理来说,三者也有着一些异曲同工之妙。

导入YouTube视频后,研究人员使用字段线来恢复相机参数,通过提取边界框、姿势和运动轨迹(跨多个帧)分割出球员轮廓。然后使用训练有素的深层网络在场中重建每个球员的深度图并在3D查看器或AR设备上渲染这些深度图。

于是识别球员的重任就落在了深度学习网络上,而它的训练方法又显得十分巧妙。有别于传统的训练方式,此系统选择了FIFA游戏作为训练素材。倘若使用普通2D足球视频,很难从干巴巴的平面中提取出训练所需的深度数据信息,而本身基于大量数据编辑而成的FIFA则可以提供更加详细的数据集。

研究人员使用RenderDoc (RenderDoc是一款功能强大的开源图形调试器,除了可以用于图形开发,还可以用来分析各游戏大作的渲染流程)来拦截游戏引擎和GPU之间的调用。与大多数游戏类似,FIFA在游戏过程中使用延迟着色,因此可以很方便地捕获每帧的深度和颜色缓冲区。一旦给定帧的深度和颜色被捕获,研究人员就将处理它以提取球员。提取的颜色缓冲区即是游戏的RGB屏幕截图。接下来用OpenGL相机矩阵来将缓冲区转化为坐标系中的三维点从而得到点云,再用DBSCAN聚类算法将球员分开,最后将每个球员的3D集群投影到图像上,并使用度量深度重新计算深度缓冲区。简单来说,利用FIFA,不光有图,还有现成的数据作参考,岂不美哉。

可是球场上的激烈角逐免不了身体碰撞,再加上摄像机机位的角度问题,很容易就造成画面内的球员相互遮挡。在有遮挡的情况下,深度学习网络的计算是混乱的。尽管有训练样本带有遮挡,但还是不足以让网络计算出一名球员的深度。出于这个原因,研究人员通过提供一个分割掩模来帮助深度网络计算,其中被追踪的球员是前景,场地、体育场和其他球员是背景。

完成了深度学习网络的计算,接下来就是对于场景的重建了。首先自然是对于摄像机参数的把握。由于需要令重建的场景为用户提供可旋转拉伸的视角,因此研究者们取球场上的边线、中线、底线等作为特征坐标以便定位。在完成了对于球员身体关键点(骨架)的捕捉后,就要生成网格了。

因为深度学习网络输出是每个像素量化的符号距离、球员的表面和虚拟平面之间的距离,所以为了获得度量深度图,要将球员的边界框提升为3D,创建一个平面(假设玩家的底部像素位于地面上)。然后,我们将网络输出的距离偏移应用到3D平面上,以获得所需的深度图。然后辅以相机参数将深度图投影到坐标中,从而以3D形式生成玩家的点云。每个像素对应一个3D点,连接像素建立面部,再对网格进行纹理贴图。根据应用的不同,还可以通过抽取部分网格来进一步简化网格结构,以节省设备中的储存空间。

当然就目前来看,该系统还有着很多不完善的地方,比如无法模拟球员跳跃、无法获得全方位令人满意的观看体验、无法实时重构、无法高效数据压缩、足球总是闪烁不定等。

总的来说,游戏的发展似乎为深度学习网络提供了丰富的素材,由此也侧面推动了AR VR技术的进步。这也为直男提供了一个新思路:等下次再有妹子问你什么是越位的时候,你就可以一帧一帧得和她讲解了。

为了好好看球,学霸们用深度学习重建整个比赛3D全息图的更多相关文章

  1. 2020国防科大综述:3D点云深度学习——综述(3D点云分割部分)

    目录 摘要 1.引言: 2.背景 2.1 数据集 2.2评价指标 3.3D点云分割 3.1 3D语义分割 3.1.1 基于投影的方法 多视图表示 球形表示 3.1.2 基于离散的方法 稠密离散表示 稀 ...

  2. Deep Learning 6_深度学习UFLDL教程:Softmax Regression_Exercise(斯坦福大学深度学习教程)

    前言 练习内容:Exercise:Softmax Regression.完成MNIST手写数字数据库中手写数字的识别,即:用6万个已标注数据(即:6万张28*28的图像块(patches)),作训练数 ...

  3. 深度学习的2016: NIPS 2016速览

    With best wishes for a happy New Year! NIPS(Nerual Information Processing Systems)是人工智能.机器学习领域的顶级学术会 ...

  4. [深度学习]实现一个博弈型的AI,从五子棋开始(1)

    好久没有写过博客了,多久,大概8年???最近重新把写作这事儿捡起来……最近在折腾AI,写个AI相关的给团队的小伙伴们看吧. 搞了这么多年的机器学习,从分类到聚类,从朴素贝叶斯到SVM,从神经网络到深度 ...

  5. [深度学习]实现一个博弈型的AI,从五子棋开始(2)

    嗯,今天接着来搞五子棋,从五子棋开始给小伙伴们聊AI. 昨天晚上我们已经实现了一个五子棋的逻辑部分,其实讲道理,有个规则在,可以开始搞AI了,但是考虑到不够直观,我们还是顺带先把五子棋的UI也先搞出来 ...

  6. 深度学习课程笔记(二)Classification: Probility Generative Model

    深度学习课程笔记(二)Classification: Probility Generative Model  2017.10.05 相关材料来自:http://speech.ee.ntu.edu.tw ...

  7. (zhuan) 126 篇殿堂级深度学习论文分类整理 从入门到应用

    126 篇殿堂级深度学习论文分类整理 从入门到应用 | 干货 雷锋网 作者: 三川 2017-03-02 18:40:00 查看源网址 阅读数:66 如果你有非常大的决心从事深度学习,又不想在这一行打 ...

  8. 深度学习哪家强?吴恩达、Udacity和Fast.ai的课程我们替你分析好了

    http://www.jianshu.com/p/28f5473c66a3 翻译 | AI科技大本营(rgznai100) 参与 | reason_W 引言 过去2年,我一直积极专注于深度学习领域.我 ...

  9. [深度学习]实现一个博弈型的AI,从五子棋开始

    好久没有写过博客了,多久,大概8年???最近重新把写作这事儿捡起来……最近在折腾AI,写个AI相关的给团队的小伙伴们看吧. 搞了这么多年的机器学习,从分类到聚类,从朴素贝叶斯到SVM,从神经网络到深度 ...

随机推荐

  1. 获取spark-submit --files的文件内容

    参考https://community.hortonworks.com/questions/9265/how-can-i-add-configuration-files-to-a-spark-job- ...

  2. Python 全栈开发七 面向对象

    一.编程范式 编程是程序员用特定的语法+数据结构+算法组成的代码来告诉计算机如何执行任务的过程 , 一个程序是程序员为了得到一个任务结果而编写的一组指令的集合,正所谓条条大路通罗马,实现一个任务的方式 ...

  3. DL中epoch、batch等的意义【转载】

    转自:深度学习中 number of training epochs 中的 epoch到底指什么? - 知乎 https://www.zhihu.com/question/43673341 1. (1 ...

  4. js 对象的_proto_属性 和函数的prototype属性分析

    bill是 Employee类型的实例,_proto_指向Employee.prototype Employee.prototype有一个constructor属性,指向Employee函数自身 fu ...

  5. gerrit设置非小组成员禁止下载代码

    对gerrit有所了解的同学,都知道gerrit 是我们常用的一个来做代码审核的工具,其中的权限管理,是一个非常重要的环节,关于每个权限的使用范围,可以参考博客https://blog.csdn.ne ...

  6. Java Selenium - 元素定位(一)

    一,单个元素对象定位 Webdriver通过findElement() , findElements()等方法调用By对象来定位和查询元素 , findElement()返回一个元素对象,否则抛出异常 ...

  7. calibur处理ROSETTA输出的多个结构文件,clustering

    下载网址:https://sourceforge.net/projects/calibur/ 安装: $ tar zxvf calibur.tar.gz $ cd calibur $ make 安装完 ...

  8. (已解决)Eclipse报错:Could not find XXX.apk. 没有Android项目命名. There is no android project named

    可能是你把当前项目设置为library项目了,按以下步骤切换回普通项目: 选择 Project->Properties 在左边的列表中,选择 Android 取消钩中"Is Libra ...

  9. RMAN备份策略与异机恢复一例

    实验环境: A机器(生产用途):RHEL 6.5 + Oracle 11.2.0.4 + IP Address 192.168.1.11 B机器(备机用途):RHEL 6.5 + Oracle 11. ...

  10. border的特殊用法

    大家很容易在一些网页上看到二级菜单上有一个小的三角形,这个小三角型 除了可以使用图片或者使用iconfont写出来,还可以使用border写出来 这边简单的为大家举一个例子,希望对大家有用吧! css ...