Given a decimal integer number you will have to find out how many trailing zeros will be there in its
factorial in a given number system and also you will have to find how many digits will its factorial have
in a given number system? You can assume that for a b based number system there are b different
symbols to denote values ranging from 0 . . . b − 1.
Input
There will be several lines of input. Each line makes a block. Each line will contain a decimal number
N (a 20bit unsigned number) and a decimal number B (1 < B ≤ 800), which is the base of the number
system you have to consider. As for example 5! = 120 (in decimal) but it is 78 in hexadecimal number
system. So in Hexadecimal 5! has no trailing zeros.
Output
For each line of input output in a single line how many trailing zeros will the factorial of that number
have in the given number system and also how many digits will the factorial of that number have in
that given number system. Separate these two numbers with a single space. You can be sure that the
number of trailing zeros or the number of digits will not be greater than 231 − 1.
Sample Input
2 10
5 16
5 10
Sample Output
0 1
0 2
1 3

求k进制下,n的阶乘的位数以及末尾0数。

位数求法很简单:我们只要知道一个m位的b进制数n,n一定会满足    b^(m-1)<=n<b^m  (用十进制数模拟一下,就可以得到结论),两边同时 取log(b) 得到 log(n) <= m,对于n!就是 log1+log2+...+log(n)。

然后求末尾0数的话,我们只要将其分解质因子,看能凑齐多少个k。具体看代码吧~

// Asimple
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <queue>
#include <vector>
#include <string>
#include <cstring>
#include <stack>
#include <set>
#include <map>
#include <cmath>
#define INF 0x3f3f3f3f
#define mod 1000000007
#define debug(a) cout<<#a<<" = "<<a<<endl
#define test() cout<<"============"<<endl
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = +;
int n, m, T, len, cnt, num, ans, Max, k; //分解质因数
int count_zero(int n, int k) {
int ans = INF;
int p[maxn], q[maxn], c[maxn];
memset(c, , sizeof(c));
memset(q, , sizeof(q)); len = ;
for(int i=; i<=k && k>; i++) {
if( k%i== ) p[len++] = i;
while( k%i== ) {
c[len-]++;
k /= i;
}
} for(int i=; i<=n; i++) {
int t = i;
for(int j=; j<len; j++) {
while( t%p[j]== && t ) {
q[j] ++;
t /= p[j];
}
}
} for(int i=; i<len; i++) {
ans = min(ans, q[i]/c[i]);
} return ans;
} int digits(int n, int k) {
double ans = 0.0;
for(int i=; i<=n; i++) {
ans = ans + log10(i+0.0);
}
ans = ans/log10(k+0.0)+1.0;
return (int)ans;
} void input(){
while( cin >> n >> k ) {
cout << count_zero(n, k) << " " << digits(n, k) << endl;
}
} int main() {
input();
return ;
}

How many zero's and how many digits ? UVA - 10061的更多相关文章

  1. uva 10061 How many zero's and how many digits ?

    How many zeros and how many digits? Input: standard input Output: standard output Given a decimal in ...

  2. UVA - 10061 How many zero&#39;s and how many digits ?

    n!=x*b^y, 当x为正整数时,最大的y就是n!末尾0的个数了, 把n,b分别拆成素因子相乘的形式: 比如, n=5,b=16 n=5,b=2^4, 非常明显,末尾0的个数为0 10进制时,n!= ...

  3. UVA 10061 How many zero's and how many digits ? (m进制,阶乘位数,阶乘后缀0)

    题意: 给出两个数字a和b,求a的阶乘转换成b进制后,输出 (1)后缀中有多少个连续的0? (2)数a的b进制表示法中有多少位? 思路:逐个问题解决. 设a!=k.  k暂时不用直接转成b进制. (1 ...

  4. n!在k进制下的后缀0

    问n! 转化成k进制后的位数和尾数的0的个数.[UVA 10061 How many zeros and how many digits?] Given a decimal integer numbe ...

  5. [LeetCode] Reconstruct Original Digits from English 从英文中重建数字

    Given a non-empty string containing an out-of-order English representation of digits 0-9, output the ...

  6. [LeetCode] Remove K Digits 去掉K位数字

    Given a non-negative integer num represented as a string, remove k digits from the number so that th ...

  7. [LeetCode] Count Numbers with Unique Digits 计算各位不相同的数字个数

    Given a non-negative integer n, count all numbers with unique digits, x, where 0 ≤ x < 10n. Examp ...

  8. [LeetCode] Add Digits 加数字

    Given a non-negative integer num, repeatedly add all its digits until the result has only one digit. ...

  9. LeetCode 258. Add Digits

    Problem: Given a non-negative integer num, repeatedly add all its digits until the result has only o ...

随机推荐

  1. ABP-添加表

    1.在My_ABP.Core根目录下先创建一个文件夹,在该文件夹里创建一个公共的类,在里面定义所需要用到的属性 public class Person:Entity      {         pu ...

  2. golang gui library 库

    andlabs/ui已经重写,稳定性增强,但是组件很少,只提供了几种基础的控件,慎用.gxui死了,别用.linuxdeepin转QT了,所以…… windows系统最好的选择是walk. 首先,写w ...

  3. Spark创建空的DataFrame

    前言 本文主要给出Spark创建空的DataFrame的代码示例,这里讲的空的DataFrame主要指有列名(可以自己随意指定),但是没有行的DataFrame,因为自己在开发过程中有这个需求,之前并 ...

  4. 适用于 Windows 7 SP1、Windows Server 2008 R2 SP1 和 Windows Server 2008 SP2 的 .NET Framework 4.5.2 仅安全更新说明:2017 年 9 月 12 日

    https://support.microsoft.com/zh-cn/help/4040960/description-of-the-security-only-update-for-the-net ...

  5. Tesseract 模块

    https://www.cnblogs.com/new-june/p/9249903.html

  6. apache mod_python 安装

    环境:Linux 2.6.32-431.23.3.el6.i686 1.安装python .tgz  ./configure --prefix=/usr/local/services/Python- ...

  7. [xdoj]1303jlz的刷题黑科技

    先分析复杂度,给的数据是1e5的,那么我们至少需要一个nlogn的算法才可以.由于答案是一个数字,首先想到是二分法(一般答案是一个数字都可以通过二分法来完成) 下面是思路: 1.可以完成题目的条件是, ...

  8. GO linux LiteIDE

    GO 有个IDE开发环境,还是挺不错的 要明确一下,GO主要还是服务器端语言,所以,这里只以linux为例来说明安装和使用 一. 下载https://www.golangtc.com/download ...

  9. TM-align TM-score安装

    TM-align是由zhang yang LAB开发的一款做蛋白结构比对的软件. 下载链接:http://zhanglab.ccmb.med.umich.edu/TM-align/TMtools201 ...

  10. Selenium基础知识(三)元素判断

    一.由于有些页面加载完后,某些元素还没有加载,这样就会导致异常,脚本稳定性变差 为了解决这个问题,selenium提供了WebDriverWait以及implicitly_wait()等待 WebDr ...