Given a decimal integer number you will have to find out how many trailing zeros will be there in its
factorial in a given number system and also you will have to find how many digits will its factorial have
in a given number system? You can assume that for a b based number system there are b different
symbols to denote values ranging from 0 . . . b − 1.
Input
There will be several lines of input. Each line makes a block. Each line will contain a decimal number
N (a 20bit unsigned number) and a decimal number B (1 < B ≤ 800), which is the base of the number
system you have to consider. As for example 5! = 120 (in decimal) but it is 78 in hexadecimal number
system. So in Hexadecimal 5! has no trailing zeros.
Output
For each line of input output in a single line how many trailing zeros will the factorial of that number
have in the given number system and also how many digits will the factorial of that number have in
that given number system. Separate these two numbers with a single space. You can be sure that the
number of trailing zeros or the number of digits will not be greater than 231 − 1.
Sample Input
2 10
5 16
5 10
Sample Output
0 1
0 2
1 3

求k进制下,n的阶乘的位数以及末尾0数。

位数求法很简单:我们只要知道一个m位的b进制数n,n一定会满足    b^(m-1)<=n<b^m  (用十进制数模拟一下,就可以得到结论),两边同时 取log(b) 得到 log(n) <= m,对于n!就是 log1+log2+...+log(n)。

然后求末尾0数的话,我们只要将其分解质因子,看能凑齐多少个k。具体看代码吧~

// Asimple
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <queue>
#include <vector>
#include <string>
#include <cstring>
#include <stack>
#include <set>
#include <map>
#include <cmath>
#define INF 0x3f3f3f3f
#define mod 1000000007
#define debug(a) cout<<#a<<" = "<<a<<endl
#define test() cout<<"============"<<endl
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = +;
int n, m, T, len, cnt, num, ans, Max, k; //分解质因数
int count_zero(int n, int k) {
int ans = INF;
int p[maxn], q[maxn], c[maxn];
memset(c, , sizeof(c));
memset(q, , sizeof(q)); len = ;
for(int i=; i<=k && k>; i++) {
if( k%i== ) p[len++] = i;
while( k%i== ) {
c[len-]++;
k /= i;
}
} for(int i=; i<=n; i++) {
int t = i;
for(int j=; j<len; j++) {
while( t%p[j]== && t ) {
q[j] ++;
t /= p[j];
}
}
} for(int i=; i<len; i++) {
ans = min(ans, q[i]/c[i]);
} return ans;
} int digits(int n, int k) {
double ans = 0.0;
for(int i=; i<=n; i++) {
ans = ans + log10(i+0.0);
}
ans = ans/log10(k+0.0)+1.0;
return (int)ans;
} void input(){
while( cin >> n >> k ) {
cout << count_zero(n, k) << " " << digits(n, k) << endl;
}
} int main() {
input();
return ;
}

How many zero's and how many digits ? UVA - 10061的更多相关文章

  1. uva 10061 How many zero's and how many digits ?

    How many zeros and how many digits? Input: standard input Output: standard output Given a decimal in ...

  2. UVA - 10061 How many zero&#39;s and how many digits ?

    n!=x*b^y, 当x为正整数时,最大的y就是n!末尾0的个数了, 把n,b分别拆成素因子相乘的形式: 比如, n=5,b=16 n=5,b=2^4, 非常明显,末尾0的个数为0 10进制时,n!= ...

  3. UVA 10061 How many zero's and how many digits ? (m进制,阶乘位数,阶乘后缀0)

    题意: 给出两个数字a和b,求a的阶乘转换成b进制后,输出 (1)后缀中有多少个连续的0? (2)数a的b进制表示法中有多少位? 思路:逐个问题解决. 设a!=k.  k暂时不用直接转成b进制. (1 ...

  4. n!在k进制下的后缀0

    问n! 转化成k进制后的位数和尾数的0的个数.[UVA 10061 How many zeros and how many digits?] Given a decimal integer numbe ...

  5. [LeetCode] Reconstruct Original Digits from English 从英文中重建数字

    Given a non-empty string containing an out-of-order English representation of digits 0-9, output the ...

  6. [LeetCode] Remove K Digits 去掉K位数字

    Given a non-negative integer num represented as a string, remove k digits from the number so that th ...

  7. [LeetCode] Count Numbers with Unique Digits 计算各位不相同的数字个数

    Given a non-negative integer n, count all numbers with unique digits, x, where 0 ≤ x < 10n. Examp ...

  8. [LeetCode] Add Digits 加数字

    Given a non-negative integer num, repeatedly add all its digits until the result has only one digit. ...

  9. LeetCode 258. Add Digits

    Problem: Given a non-negative integer num, repeatedly add all its digits until the result has only o ...

随机推荐

  1. PHP 操作 Redis 的手册

    转:https://www.cnblogs.com/jackluo/p/5708024.html String 类型操作 string是redis最基本的类型,而且string类型是二进制安全的.意思 ...

  2. 为python.exe或者ipython.exe添加环境变量

    在pycharm下可以把Module包添加到interpreter paths,从而实现import Module. 而若直接使用ipython,或者python.exe时,它们的环境变量并没有包含M ...

  3. 模仿以太坊 ERC20 规范的 Hyperledger Fabric 实现 Token 通证

    合约: package main /* -------------------------------------------------- Author: netkiller <netkill ...

  4. Linux下Nginx安装

    前提: 1.需要gcc环境:yum install gcc-c++ 2.需要第三方开发包: PCRE.zlib.openssl yum install -y pcre pcre-devel yum i ...

  5. 【LeetCode每天一题】Longest Palindromic Substring(最长回文字串)

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  6. MySql语句常用命令整理---单表查询

    初始化t_employee表 创建t_employee表 -- DROP TABLE IF EXISTS test; CREATE TABLE t_employee ( _id INTEGER PRI ...

  7. React.createClass 、React.createElement、Component

    react里面有几个需要区别开的函数 React.createClass .React.createElement.Component 首选看一下在浏览器的下面写法: <div id=" ...

  8. js并归排序的思路

    并归排序,就是分而治之,将长的数组分解为短的数组,一直分到最后,单个单个数组,我们就认为,只有一个元素的数组是有序的.然后再逐个的合并 1.拆分: 很容易 例如数组  [ 2,4,3,5,1,6,8, ...

  9. Appium遇到的问题二(持续更新....)

    Python版: 1.运行Appium遇到的错误:此问题是由于JDK版本要在1.7及以上. Android开发要求. A new session could not be created. C:\Py ...

  10. OEMCC13.2 添加监控目标

    1.需求描述 2.添加数据库目标 2.1 部署AGENT   2.1.1 直接安装方式   2.1.2 离线安装方式   2.1.3 命令行安装方式 2.2 添加集群资源 2.3 添加数据库 3.添加 ...