<Spark><Tuning and Debugging>
Overview
- 这一部分我们主要讨论如果配置一个Spark application,如何tune and debug Spark workloads
- 配置对Spark应用性能调优很重要。我们有必要理解一个Spark应用的性能。
Configuring Spark with SparkConf
- 我们知道,在创建SparkContext的时候会需要SparkConf实例。一个例子:
val conf = new SparkConf()
.setAppName("Test")
.setMaster("local")
val sc = new SparkContext(conf)- SparkConf类很简单,包含一些用户可覆盖的配置选项的键值对
- 也可以通过spark-submit动态地设置配置。基于这种方法,你可以在程序中new一个“空”的SparkConf,直接传给SparkContext。这种方式下可以直接使用 --conf标记,该标记之后可以使用任何Spark配置值。例子:
bin/spark-submit \
--class com.wtttt.spark.test \
--master local \
--name "test" \
--conf spark.ui.port=36000 \
test.jar- 这种spark-submit的方式除了可以使用--conf,还可以从文件加载。缺省情况下,spark-submit会在conf/spark-defaults.conf中读取whitespace-delimited 的键值对。你也可以使用
--properties-file 来指定conf文件。例子:
bin/spark-submit \
--class com.wttttt.spark.test \
--properties-file my-config.conf \
test.jar## Contents of my-config.conf ##
spark.master local[4]
spark.app.name "test"
spark.ui.port 36000 - 如果多处同时设置的话,程序设置的优先级高于spark-submit指定的。
- 完整的conf选项参考 spark configuration。
Components of Execution: Jobs, Tasks, and Stages
- 我们知道,Spark会把逻辑表示翻译成一系列物理执行计划,by merging multiple operations into tasks.
- 看下面的例子:
val input = sc.textFile("input.txt") val tokenized = input.
map(line => line.split(" ")).
filter(words => words.size > 0) val counts = tokenized.
map(words => (words(0), 1)).
reduceByKey{ (a, b) => a + b} // example of the source file "input.txt"
## input.txt ##
INFO This is a message with content
INFO This is some other content
(empty line)
INFO Here are more messages
WARN This is a warning
(empty line)
ERROR Something bad happened
WARN More details on the bad thing
INFO back to normal messages - 当我们在shell输入上述语句之后,并不会执行任何actions,只会隐式地定义一个DAG(有向无环图)。我们可以用toDebugString来看看:
scala> counts.toDebugString
res84: String =
(2) ShuffledRDD[296] at reduceByKey at <console>:17
+-(2) MappedRDD[295] at map at <console>:17
| FilteredRDD[294] at filter at <console>:15
| MappedRDD[293] at map at <console>:15
| input.text MappedRDD[292] at textFile at <console>:13 | input.text HadoopRDD[291] at textFile at <console>:13- 我们执行一个action来触发计算: counts.collect()
- 这时,Spark的调度器scheduler会创建一个物理执行计划来计算该action所需的RDDs(递归地向前找所有需要的RDDs)。
- 更复杂的情况是,stages的物理集合不是与RDD graph 1:1对应的。这种情况发生在scheduler执行pipelining或者合并多个RDDs到一个stage的时候。pipelining发生在RDDs可以从parents本地计算的时候(不需要data movement)。
- 对于上面的例子,计算counts的时候,即使counts有很多个parent RDDs,它也只存在two levels of indentation。所以它的物理执行只需要两个stages。该例中的pipelining就是因为有多个filter和map的序列。如下图:
- 运行这个action,看spark UI: 一共一个job,两个stages。
- Completed Jobs (1)
Completed Stages (2)
- 除了pipelining,Spark内部的scheduler也会在有RDD已经被persisted到内存或磁盘的时候缩短RDD graph的lineage。
- 还有一种(可缩短lineage的)情况是,RDD已经通过之前的shuffle被materialized到磁盘。即使没有显式地调用persist()。这种情况是充分利用了shuffle的输出会写到磁盘的特点。
- 做个实验:
counts.cache()
counts.collect()看下这个job的stages:
可以看到只执行了一个stage,另一个被skip了。
- 以上,Spark执行的时候包括这么几个阶段:
- User code定义一个RDD的DAG;
- Actions force DAG到执行计划的translation;这时Spark调度器提交一个job来计算所有所需的RDDs。该job会有一或多个stages,它们是由task组成的并行计算浪潮(parallel waves of computation composed of tasks)。由于pipelining,每个stage可以对应多个RDDs。
- Tasks被调度,在集群上执行;stages按顺序执行,individual tasks执行RDD的各个部分。
Finding Information
- 具体的进度信息、性能度量可以在Spark web UI以及driver和executor的logfiles中找到。
Spark Web UI
- 说明:YARN cluster模式下,application driver是运行在cluster内部的,因此你需要通过YARN resourceManager来访问UI。
Jobs: Progress and metrics of stages, tasks, and more
- 一般首先是点进去一个比较慢的stage,其内部可能存在skew,因此你可以看下是否某些tasks运行时间过长。比如你可以看是否这些tasks read, write or compute much more than others?
- 你还可以看每个task读、计算、写分别占用的时间。如果tasks花很少时间读写,那么可能user code本身是expensive的,作为solution之一你可以参考advanced programming中提到的"Working on a Per-Partition Basis"来减少比如创建对象的开销。 但是如果tasks花费很多时间来从外部系统读取数据,那么可能不存在更多的外部优化方式。
Storage: Information for RDDs that are persisted
- storage页面包含了persisted RDDs的信息。
- 通常,如果很多RDDs都会缓存的话,older ones可能会被移除。
Executors: A list of executors present in the application
- 该页列出了应用中活跃的executors,以及每个executor在处理和存储中的一些度量。
- 这一页的用处是你可以确认你的application拥有你所预期的资源。
Environment: Debugging Spark's configuration
This page enumerates the set of active properties in the environment of your Spark application.
Driver and Executor logs
- YARN模式下,最简单的收集日志的方式是使用YARN日志收集工具
(running yarn logs -applicationId <app ID>)
<Spark><Tuning and Debugging>的更多相关文章
- 简单物联网:外网访问内网路由器下树莓派Flask服务器
最近做一个小东西,大概过程就是想在教室,宿舍控制实验室的一些设备. 已经在树莓上搭了一个轻量的flask服务器,在实验室的路由器下,任何设备都是可以访问的:但是有一些限制条件,比如我想在宿舍控制我种花 ...
- 利用ssh反向代理以及autossh实现从外网连接内网服务器
前言 最近遇到这样一个问题,我在实验室架设了一台服务器,给师弟或者小伙伴练习Linux用,然后平时在实验室这边直接连接是没有问题的,都是内网嘛.但是回到宿舍问题出来了,使用校园网的童鞋还是能连接上,使 ...
- 外网访问内网Docker容器
外网访问内网Docker容器 本地安装了Docker容器,只能在局域网内访问,怎样从外网也能访问本地Docker容器? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Docker容器 ...
- 外网访问内网SpringBoot
外网访问内网SpringBoot 本地安装了SpringBoot,只能在局域网内访问,怎样从外网也能访问本地SpringBoot? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装Java 1 ...
- 外网访问内网Elasticsearch WEB
外网访问内网Elasticsearch WEB 本地安装了Elasticsearch,只能在局域网内访问其WEB,怎样从外网也能访问本地Elasticsearch? 本文将介绍具体的实现步骤. 1. ...
- 怎样从外网访问内网Rails
外网访问内网Rails 本地安装了Rails,只能在局域网内访问,怎样从外网也能访问本地Rails? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Rails 默认安装的Rails端口 ...
- 怎样从外网访问内网Memcached数据库
外网访问内网Memcached数据库 本地安装了Memcached数据库,只能在局域网内访问,怎样从外网也能访问本地Memcached数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装 ...
- 怎样从外网访问内网CouchDB数据库
外网访问内网CouchDB数据库 本地安装了CouchDB数据库,只能在局域网内访问,怎样从外网也能访问本地CouchDB数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Cou ...
- 怎样从外网访问内网DB2数据库
外网访问内网DB2数据库 本地安装了DB2数据库,只能在局域网内访问,怎样从外网也能访问本地DB2数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动DB2数据库 默认安装的DB2 ...
- 怎样从外网访问内网OpenLDAP数据库
外网访问内网OpenLDAP数据库 本地安装了OpenLDAP数据库,只能在局域网内访问,怎样从外网也能访问本地OpenLDAP数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动 ...
随机推荐
- android -------- ConstraintLayout 约束属性(二)
ConstraintLayout 介绍 (一) ConstraintLayout 最基本的属性控制有以下几个,即 layout_constraintXXX_toYYYOf 格式的属性,即将“View ...
- Django admin 管理工具
admin 组件的使用 Django 提供了基于 web 的管理工具.Django 自动管理工具是 django.contrib 的一部分. INSTALLED_APPS = [ 'django.co ...
- 3月19 HTML静态网页的制作
HTML :内容(Hyper Text Markup Language,超文本标记语言) <html>---开始标签 <head> 网页上的控制信息 <title> ...
- IDEA 错误:找不到或无法加载主类
下的java核心编程的源码,只有java文件,没有idea或者eclipse的项目结构信息. 分别用eclipse和idea打开了一遍,方便学习调试. 项目文件夹:E:\学习资料\Java\语法\ja ...
- flex布局文本过长不显示省略号
https://www.cnblogs.com/tgxh/p/6916930.html 解决方法: 给flex子元素添加css: white-space: nowrap; text-overflow: ...
- 十九、Spring框架(注解方式测试)
一.注解方式测试 1.注解方式测试使用junit.使用junit-4.12.jar和hamcrest-all-1.3.jar(单元测试包) 把这两个jar包,导入到lib文件夹下. 2.TestSpr ...
- tls 流量画像——直接使用图像处理的思路探索,待进一步观察
代码,示意了一个tls的数据内容: import numpy as np import matplotlib.pyplot as pyplot # !!! If on the server, use ...
- JS时钟--星期 年 月 日 时 分
var clock = function(clockName){ var mydate = new Date(); var hours = mydate.getHours(); var minutes ...
- nginx升级教程
1.说明 CVE-2016-4450,可通过构造特定数据包,可引发nginx引用空指针,导致nginx出错从而造成拒绝服务攻击. 影响1.3.9到1.11.0的所有版本,进行修复的1.10.1和1.1 ...
- weblogic修改安装路径教程
我们有一个安装好的weblogic,我们想再装一个weblogic或者想把weblogic装到别的目录去,最直接的做法是从头装一个. 但是从头装一个是比较费时费力的,尤其是打补丁环节和创domain环 ...