Nowadays, a kind of chess game called “Super Jumping! Jumping! Jumping!” is very popular in HDU. Maybe you are a good boy, and know little about this game, so I introduce it to you now.

The game can be played by two or more than two players. It consists of a chessboard(棋盘)and some chessmen(棋子), and all chessmen are marked by a positive integer or “start” or “end”. The player starts from start-point and must jumps into end-point finally. In the course of jumping, the player will visit the chessmen in the path, but everyone must jumps from one chessman to another absolutely bigger (you can assume start-point is a minimum and end-point is a maximum.). And all players cannot go backwards. One jumping can go from a chessman to next, also can go across many chessmen, and even you can straightly get to end-point from start-point. Of course you get zero point in this situation. A player is a winner if and only if he can get a bigger score according to his jumping solution. Note that your score comes from the sum of value on the chessmen in you jumping path. 
Your task is to output the maximum value according to the given chessmen list. 

InputInput contains multiple test cases. Each test case is described in a line as follow:
N value_1 value_2 …value_N 
It is guarantied that N is not more than 1000 and all value_i are in the range of 32-int. 
A test case starting with 0 terminates the input and this test case is not to be processed. 
OutputFor each case, print the maximum according to rules, and one line one case. 
Sample Input

3 1 3 2
4 1 2 3 4
4 3 3 2 1
0

Sample Output

4
10
3 用最朴素的LIS解决办法就可以ac。
dp[i] = max(dp[i],dp[j]+arr[i])
然后记录答案 ans = max(ans,dp[i]);
输出ans就是答案了。
#include <bits/stdc++.h>
using namespace std; const int M = 1000+9;
int arr[M],dp[M]; int main()
{
int n;
while(scanf("%d",&n) != EOF && n)
{
memset(dp,0,sizeof(dp));
int ans = -99999;
for(int i = 0; i < n; i++)
scanf("%d",&arr[i]); for(int i = 0; i < n; i++)
{
dp[i] = arr[i];
for(int j = 0; j < i; j++)
{
if(arr[i] > arr[j])
dp[i] = max(dp[j]+arr[i],dp[i]);
}
ans = max(ans,dp[i]);
}
printf("%d\n",ans);
}
return 0;
}

HDU 1087 最长不下降子序列 LIS DP的更多相关文章

  1. SPOJ 3943 - Nested Dolls 最长不下降子序列LIS(二分写法)

    现在n(<=20000)个俄罗斯套娃,每个都有宽度wi和高度hi(均小于10000),要求w1<w2并且h1<h2的时候才可以合并,问最少能剩几个. [LIS]乍一看跟[这题]类似, ...

  2. luogu2766 最长不下降子序列问题 DP 网络流

    题目大意:给定正整数序列x1,...,xn .(1)计算其最长不下降子序列的长度s.(不一定是否连续)(2)计算从给定的序列中最多可取出多少个长度为s的不下降子序列.(序列内每一个元素不可重复)(3) ...

  3. 最长不下降子序列//序列dp

    最长不下降子序列 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 求最长不下降子序列的长度 输入格式 第一行为n,表示n个数第二行n个数 输出格式 最长不下降 ...

  4. Codeforces Round #323 (Div. 2) Once Again... CodeForces - 582B 最长非下降子序列【dp】(不明白)

    B. Once Again... time limit per test 1 second memory limit per test 256 megabytes input standard inp ...

  5. SPOJ 4053 - Card Sorting 最长不下降子序列

    我们的男主现在手中有n*c张牌,其中有c(<=4)种颜色,每种颜色有n(<=100)张,现在他要排序,首先把相同的颜色的牌放在一起,颜色相同的按照序号从小到大排序.现在他想要让牌的移动次数 ...

  6. HDU 6357.Hills And Valleys-字符串非严格递增子序列(LIS最长非下降子序列)+动态规划(区间翻转l,r找最长非递减子序列),好题哇 (2018 Multi-University Training Contest 5 1008)

    6357. Hills And Valleys 自己感觉这是个好题,应该是经典题目,所以半路选手补了这道字符串的动态规划题目. 题意就是给你一个串,翻转任意区间一次,求最长的非下降子序列. 一看题面写 ...

  7. 最长不下降子序列(LIS)

    最长上升子序列.最长不下降子序列,解法差不多,就一点等于不等于的差别,我这里说最长不下降子序列的. 有两种解法. 一种是DP,很容易想到,就这样: REP(i,n) { f[i]=; FOR(j,,i ...

  8. hdu 4604 Deque(最长不下降子序列)

    从后向前对已搜点做两遍LIS(最长不下降子序列),分别求出已搜点的最长递增.递减子序列长度.这样一直搜到第一个点,就得到了整个序列的最长递增.递减子序列的长度,即最长递减子序列在前,最长递增子序列在后 ...

  9. [Swust OJ 585]--倒金字塔(LIS最长不下降子序列)

    题目链接:http://acm.swust.edu.cn/problem/585/ Time limit(ms): 3000 Memory limit(kb): 65535   SWUST国的一支科学 ...

随机推荐

  1. Loadrunner回放脚本时报错Action.c(41): Error -27979: Requested form not found [MsgId: MERR-27979]

    解决方法 打开录制选项配置对话框进行设置,在“Recording Options”的“Internet Protocol”选项里的“Recording”中选择“Recording Level”为“HT ...

  2. opencv手工编译

    opencv手工编译方法1.下载cmake gui2.在where is the source code路径下配置opencv根目录,在where to build the binaries路径下配置 ...

  3. mysql实时增量备份

    采用binlog日志的好处 掌控所有更改操作,必要时可用于恢复数据 数据库主从复制的必要条件 [root@localhost~]# vim /etc/my.cnf [mysqld] .. .. log ...

  4. Emmagee——开源Android性能测试工具

    工具:Emmagee作者:孔庆云 网易(杭州)质量保证部 开源地址:https://github.com/NetEase/Emmagee Wiki:https://github.com/NetEase ...

  5. CentOS7.0+Zend Guard Loader for PHP 5.6环境搭建

    本文是在centos7.0环境下搭建的, 由于我的php是5.6版本的, 所以需要去下载对应的Zend Guard Loader. 下载地址: http://www.zend.com/en/produ ...

  6. python的__getitem__

    #这个方法返回与指定键相关的值.对序列来说,键应该是0~n-1的整数,其中n为序列的长度.对映射来说,键可以是任何类型. class Test(object): def __init__(self): ...

  7. 阿里云ECS利用密钥对ssh登录服务器

    https://blog.csdn.net/u012865381/article/details/78521087/ 1.在服务机上操作创建要远程登录的用户和密码 [root@izwz97s23bov ...

  8. iot-dm异常日志

    iot-dm 本机断网日志 2018-03-15 08:55:41,345 INFO com.inspur.iot.client.core.IotConnection Connection is be ...

  9. 10.25 AITalkUat部署

    准备: git clone AITalkUat工程,在本地跑: 可以直接浏览器访问127.0.0.1:5000() 如果带上参数,可以得到访问的结果127.0.0.1:5000/autoservice ...

  10. 3-Python3 环境搭建