HDU 1087 最长不下降子序列 LIS DP
The game can be played by two or more than two players. It consists of a chessboard(棋盘)and some chessmen(棋子), and all chessmen are marked by a positive integer or “start” or “end”. The player starts from start-point and must jumps into end-point finally. In the course of jumping, the player will visit the chessmen in the path, but everyone must jumps from one chessman to another absolutely bigger (you can assume start-point is a minimum and end-point is a maximum.). And all players cannot go backwards. One jumping can go from a chessman to next, also can go across many chessmen, and even you can straightly get to end-point from start-point. Of course you get zero point in this situation. A player is a winner if and only if he can get a bigger score according to his jumping solution. Note that your score comes from the sum of value on the chessmen in you jumping path.
Your task is to output the maximum value according to the given chessmen list.
InputInput contains multiple test cases. Each test case is described in a line as follow:
N value_1 value_2 …value_N
It is guarantied that N is not more than 1000 and all value_i are in the range of 32-int.
A test case starting with 0 terminates the input and this test case is not to be processed.
OutputFor each case, print the maximum according to rules, and one line one case.
Sample Input
3 1 3 2
4 1 2 3 4
4 3 3 2 1
0
Sample Output
4
10
3 用最朴素的LIS解决办法就可以ac。
dp[i] = max(dp[i],dp[j]+arr[i])
然后记录答案 ans = max(ans,dp[i]);
输出ans就是答案了。
#include <bits/stdc++.h>
using namespace std; const int M = 1000+9;
int arr[M],dp[M]; int main()
{
int n;
while(scanf("%d",&n) != EOF && n)
{
memset(dp,0,sizeof(dp));
int ans = -99999;
for(int i = 0; i < n; i++)
scanf("%d",&arr[i]); for(int i = 0; i < n; i++)
{
dp[i] = arr[i];
for(int j = 0; j < i; j++)
{
if(arr[i] > arr[j])
dp[i] = max(dp[j]+arr[i],dp[i]);
}
ans = max(ans,dp[i]);
}
printf("%d\n",ans);
}
return 0;
}
HDU 1087 最长不下降子序列 LIS DP的更多相关文章
- SPOJ 3943 - Nested Dolls 最长不下降子序列LIS(二分写法)
现在n(<=20000)个俄罗斯套娃,每个都有宽度wi和高度hi(均小于10000),要求w1<w2并且h1<h2的时候才可以合并,问最少能剩几个. [LIS]乍一看跟[这题]类似, ...
- luogu2766 最长不下降子序列问题 DP 网络流
题目大意:给定正整数序列x1,...,xn .(1)计算其最长不下降子序列的长度s.(不一定是否连续)(2)计算从给定的序列中最多可取出多少个长度为s的不下降子序列.(序列内每一个元素不可重复)(3) ...
- 最长不下降子序列//序列dp
最长不下降子序列 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 求最长不下降子序列的长度 输入格式 第一行为n,表示n个数第二行n个数 输出格式 最长不下降 ...
- Codeforces Round #323 (Div. 2) Once Again... CodeForces - 582B 最长非下降子序列【dp】(不明白)
B. Once Again... time limit per test 1 second memory limit per test 256 megabytes input standard inp ...
- SPOJ 4053 - Card Sorting 最长不下降子序列
我们的男主现在手中有n*c张牌,其中有c(<=4)种颜色,每种颜色有n(<=100)张,现在他要排序,首先把相同的颜色的牌放在一起,颜色相同的按照序号从小到大排序.现在他想要让牌的移动次数 ...
- HDU 6357.Hills And Valleys-字符串非严格递增子序列(LIS最长非下降子序列)+动态规划(区间翻转l,r找最长非递减子序列),好题哇 (2018 Multi-University Training Contest 5 1008)
6357. Hills And Valleys 自己感觉这是个好题,应该是经典题目,所以半路选手补了这道字符串的动态规划题目. 题意就是给你一个串,翻转任意区间一次,求最长的非下降子序列. 一看题面写 ...
- 最长不下降子序列(LIS)
最长上升子序列.最长不下降子序列,解法差不多,就一点等于不等于的差别,我这里说最长不下降子序列的. 有两种解法. 一种是DP,很容易想到,就这样: REP(i,n) { f[i]=; FOR(j,,i ...
- hdu 4604 Deque(最长不下降子序列)
从后向前对已搜点做两遍LIS(最长不下降子序列),分别求出已搜点的最长递增.递减子序列长度.这样一直搜到第一个点,就得到了整个序列的最长递增.递减子序列的长度,即最长递减子序列在前,最长递增子序列在后 ...
- [Swust OJ 585]--倒金字塔(LIS最长不下降子序列)
题目链接:http://acm.swust.edu.cn/problem/585/ Time limit(ms): 3000 Memory limit(kb): 65535 SWUST国的一支科学 ...
随机推荐
- 实验四 Android程序设计
20155224 实验四 Android程序设计 实验报告 实验报告封面: 课程:Java程序设计 班级:1652班 姓名:王高源 学号:20165225 指导教师:娄嘉鹏 实验日期:2018年5月1 ...
- 解决双系统(Window10+Ubuntu16.10)下ubuntu安装git时提示软件包git没有可安装候选问题
选择升级系统: sudo apt-get update 升级之后再输入: sudo apt-get install git 可成功安装.
- Linux 命令locate
原文:https://blog.csdn.net/liang19890820/article/details/53285624 简述 locate 可以很快速的搜寻档案系统内是否有指定的档案.其方法是 ...
- P4827 [国家集训队] Crash 的文明世界
传送门:洛谷 题目大意:设$$S(i)=\sum_{j=1}^ndis(i,j)^k$$,求$S(1),S(2),\ldots,S(n)$. 数据范围:$n\leq 50000,k\leq 150$ ...
- Web前端性能优化策略
前端性能优化需要从前端的资源类型分析,以减少请求资源和请求时间为目的.目前的类型包括图片.javascript.css.动态数据等,不同的资源对于运算.带宽等的依赖也不同,因此优化的方式也不同.参照以 ...
- magento 2.3安装测试数据
前面我们一步步composer安装Magento2.3,但是没有数据的话各项设置不是很熟悉,所以最好还是安装一下测试数据.下面我们就跟ytkah一起填充数据.假设magento 2.3安装目录是/ww ...
- Sonatype Nexus Repository Manager修改密码不成功
nexus修改用户密码时出现Invalid authentication ticket 搜索一下,说会修改密码操作要在15秒内完成 ,于是快速操作,没想到真成功了
- memcached命令知识
memcached安装配置 yum install memcached memcached最大的缓存单位为1M,大于1M的单项数据将不会缓存 memcached是基于文本协议的,所 ...
- wxPython:消息对话框MessageDialog
wxMessageDialog(wxWindow* parent, const wxString& message, const wxString& caption = "M ...
- cube-ui中弹窗
if (!this.surname) { this.$createDialog({ type: "alert", icon: "cubeic-close", s ...