题意

给你n个点,m条边,要求每条边只能走一次的S到T的最短路径的个数


题解

在我又WA又TLE还RE时,yyb大佬告诉我说要跑两遍SPFA,还说我写的一遍SPFA是错的,然而

啪啪打脸。。。
而且他的

比我跑得慢,2333
接下来讲一下方法
首先一遍SPFA(或dijkstra)从S跑一遍到所有点的最短路,重新建图时对于每对u, v 若 dis[u] + w[u][v] == dis[v] 则加入这条边,容量为1(还要加反边),最后跑最大流即可,最大流我用的是Dinic,然后注意手打队列,系统的会TLE


常熟巨大的丑陋代码

# include <bits/stdc++.h>
# define RG register
# define IL inline
# define ll long long
# define mem(a, b) memset(a, b, sizeof(a))
# define Min(a, b) (((a) > (b)) ? (b) : (a))
# define Max(a, b) (((a) < (b)) ? (b) : (a))
using namespace std; IL int Get(){
RG char c = '!'; RG int x = 0, z = 1;
for(; c > '9' || c < '0'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c <= '9' && c >= '0'; c = getchar()) x = x * 10 + c - '0';
return x * z;
} const int MAXN = 1001, MAXM = 200001, INF = 2147483647;
int n, m, ft[MAXN], cnt, ans, dis[MAXN], vis[MAXN], _ft[MAXN], level[MAXN], Q[MAXM];
struct Edge{
int to, f, nt;
} edge[MAXM], _edge[MAXM]; IL void Add(RG int u, RG int v, RG int f){
edge[cnt] = (Edge){v, f, ft[u]}; ft[u] = cnt++;
} IL void Add2(RG int u, RG int v, RG int f){
_edge[cnt] = (Edge){v, f, _ft[u]}; _ft[u] = cnt++;
} IL void SPFA(RG int S, RG int T){
RG int head = 0, tail = 0;
Q[0] = S; vis[S] = 1; dis[S] = 0;
while(head <= tail){
RG int u = Q[head++]; vis[u] = 0;
for(RG int e = ft[u]; e != -1; e = edge[e].nt){
RG int v = edge[e].to, f = edge[e].f + dis[u];
if(dis[v] > f){
dis[v] = f;
if(!vis[v]) vis[v] = 1, Q[++tail] = v;
}
}
}
} IL bool Bfs(RG int S, RG int T){
mem(level, 0);
RG int head = 0, tail = 0;
Q[0] = S; level[S] = 1;
while(head <= tail){
RG int u = Q[head++];
if(u == T) return 1;
for(RG int e = _ft[u]; e != -1; e = _edge[e].nt){
RG int v = _edge[e].to, f = _edge[e].f;
if(f && !level[v]){
level[v] = level[u] + 1;
Q[++tail] = v;
}
}
}
return 0;
} IL int Dfs(RG int u, RG int T, RG int maxf){
if(u == T) return maxf;
RG int res = 0;
for(RG int e = _ft[u]; e != -1; e = _edge[e].nt){
RG int v = _edge[e].to, f = _edge[e].f;
if(level[u] + 1 == level[v] && f){
f = Dfs(v, T, Min(f, maxf - res));
_edge[e].f -= f; _edge[e ^ 1].f += f;
res += f;
if(res == maxf) break;
}
}
return res;
} int main(){
RG int T = Get();
while(T--){
n = Get(); m = Get();
mem(ft, -1); mem(dis, 63); mem(_ft, -1); ans = cnt = 0;
for(RG int i = 1; i <= m; i++){
RG int u = Get(), v = Get(), f = Get();
if(u == v) continue;
Add(u, v, f);
}
RG int S = Get(), T = Get(); cnt = 0;
SPFA(S, T);
for(RG int i = 1; i <= n; i++)
for(RG int e = ft[i]; e != -1; e = edge[e].nt)
if(dis[i] + edge[e].f == dis[edge[e].to])
Add2(i, edge[e].to, 1), Add2(edge[e].to, i, 0);
while(Bfs(S, T)) ans += Dfs(S, T, INF);
printf("%d\n", ans);
}
return 0;
}

Marriage Match IV HDU - 3416的更多相关文章

  1. O - Marriage Match IV - hdu 3416(最短路+最大流)

    题目大意:在城市A的男孩想去城市B的女孩,不过他去城市B必须走最短路,并且走过的路不可以再走,问他最多能看这个女孩多少次.   分析:因为这个男孩直走最短路,所以我们必须求出来所有最短路径上的路,怎么 ...

  2. Marriage Match IV HDU - 3416(最短路 + 最大流)

    题意: 求有多少条最短路 解析: 正着求一遍最短路 得dis1 反着求一遍得 dis2   然后 遍历所有的边 如果  dis1[u] + dis2[v] + w == dis1[B], 则说明这是一 ...

  3. HDU 3416 Marriage Match IV (最短路径,网络流,最大流)

    HDU 3416 Marriage Match IV (最短路径,网络流,最大流) Description Do not sincere non-interference. Like that sho ...

  4. hdu 3416 Marriage Match IV (最短路+最大流)

    hdu 3416 Marriage Match IV Description Do not sincere non-interference. Like that show, now starvae ...

  5. HDU 3416 Marriage Match IV (求最短路的条数,最大流)

    Marriage Match IV 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/Q Description Do not si ...

  6. Marriage Match IV(最短路+网络流)

    Marriage Match IV http://acm.hdu.edu.cn/showproblem.php?pid=3416 Time Limit: 2000/1000 MS (Java/Othe ...

  7. HDU3605:Marriage Match IV

    Marriage Match IV Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  8. HDU3416 Marriage Match IV —— 最短路径 + 最大流

    题目链接:https://vjudge.net/problem/HDU-3416 Marriage Match IV Time Limit: 2000/1000 MS (Java/Others)    ...

  9. Q - Marriage Match IV (非重复最短路 + Spfa + 网络最大流Isap)

    Q - Marriage Match IV Do not sincere non-interference. Like that show, now starvae also take part in ...

随机推荐

  1. LVS的NAT模式测试

    dir 分别配置ip  eth0 :10.222.138.200   eth0:1 10.222.21.190 rs1 eth0  :10.222.138.201 rs2 eth0: 10.222.1 ...

  2. Flag

    之前一直怕别人知道你在干什么,其实根本没人在乎你在干什么.做好你自己不就行了,现在这里将成为你的记录生活与学习的地方,尽管目前就你自己,但是你要相信,会有千万人和你在一起,大胆的往前走吧.--- 致自 ...

  3. ARM平台的虚拟化介绍

    本篇博文主要介绍虚拟化的基本思想以及在arm平台如何做虚拟化,arm提供的硬件feature等等. 虚拟化技术简介 虚拟化技术 虚拟化是一个概念,单从这个概念的角度来看,只要是用某一种物品去模拟另一种 ...

  4. PHP对象和接口抽象类注意事项

    Php 的对象的实现: 注:对象名称最好以对象名.class.php来进行命名. 1. 对于静态类的成员不能使用$this->这个来调用其静态类的成员和函数,应该使用self::成员或者方法来进 ...

  5. 【前端开发】解决ios设备上fixed浮动的input输入框兼容问题

    我们在开发移动端页面时,经常会存在这种需求,在页面顶部或底部有一个输入框,一直浮动在顶部或底部位置,中间部分的内容是可以滚动的.比如底部输入框的搜索功能,或底部输入框的写评论功能. 这种问题,我们一般 ...

  6. Yii2按需加载图片怎么做?

    按需加载图片应该用 jQuery LazyLoad 图片延迟加载按需加载文件夹应该用 Yii::import

  7. 支持ipV6和ipV4的客户端编程

    ipv4和ipv6在socket初始化的时候是不一样的. ipv4 socket初始化: int CClient::InitSocket(CString strIP, short portNum) { ...

  8. php留言板

    这个小项目的学习,就这样结束啦.由于过程中需要使用到js,这个目前还是感觉不会.之前的分析还是不太懂的.现在心里还是有点迷茫.什么都是照着葫芦画瓢. 我的拥有自己的东西才行.

  9. ehcache的基本使用及Spring整合

    1.ehcache:百度百科这样解释的,EhCache 是一个纯Java的进程内缓存框架,具有快速.精干等特点,是Hibernate中默认的CacheProvider.总的来说,他的出现就是减少对数据 ...

  10. EntityFramework Core 2.0全局过滤(HasQueryFilter)

    前言 EntityFramework Core每一次版本的迭代和更新都会带给我们惊喜,每次都会尽量满足大部分使用者的需求.在EF Core 2.0版本中出现了全局过滤新特性即HasQueryFilte ...