Description

  小 B 有一个很大的数 S,长度达到了 N 位;这个数可以看成是一个串,它可能有前导 0,例如00009312345
。小B还有一个素数P。现在,小 B 提出了 M 个询问,每个询问求 S 的一个子串中有多少子串是 P 的倍数(0 也
是P 的倍数)。例如 S为0077时,其子串 007有6个子串:0,0,7,00,07,007;显然0077的子串007有6个子串都是素
数7的倍数。

Input

  第一行一个整数:P。第二行一个串:S。第三行一个整数:M。接下来M行,每行两个整数 fr,to,表示对S 的
子串S[fr…to]的一次询问。注意:S的最左端的数字的位置序号为 1;例如S为213567,则S[1]为 2,S[1…3]为 2
13。N,M<=100000,P为素数

Output

  输出M行,每行一个整数,第 i行是第 i个询问的答案。

Sample Input

11
121121
3
1 6
1 5
1 4

Sample Output

5
3
2
  //第一个询问问的是整个串,满足条件的子串分别有:121121,2112,11,121,121。

HINT

Source

  2016.4.19新加数据一组

Solution

  把n个后缀组成的数字全部对p取模。

  若s[l] ~ s[n]的余数和s[r] ~ s[n]的余数相同,那么s[l] ~ s[r - 1]区间内的数字就是p的倍数(l < r)

  这里有例外:当p = 2或p = 5时不成立。

  然后这个题就变成经典莫队题了:给定一个序列,每次询问[l, r]内有多少对相同的数

  每一个余数i给一个计数器ba[i](需离散化),记录[l, r]中这个数出现了几次,区间长度±1时答案改变值为ba[i]。

  然后。。。原数据里没有p = 2或p = 5的情况。。。所以就没有然后了。然而BZOJ加了组数据

  p = 2或p = 5时,用两个数组分别表示[1, i]中2或5的倍数时有多少种情况及有多少个数末尾是2或5的倍数,用前缀和维护。这部分就很简单了。

 #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll sqn, lst[], cd[], ba[], ans[];
struct query
{
ll id, l, r;
bool operator < (const query &rhs) const
{
if(l / sqn == rhs.l / sqn) return r < rhs.r;
return l / sqn < rhs.l / sqn;
}
}q[];
char s[];
map<ll, ll> Map;
int main()
{
ll n, m, p, l = , r = , cur = , bt = ;
scanf("%lld%s%lld", &p, s + , &m);
n = strlen(s + ), sqn = (ll)sqrt(n * 1.0);
if(p != && p != )
{
for(ll i = n; i; i--)
{
bt = bt * % p;
lst[i] = (lst[i + ] + (s[i] - ) * bt) % p;
cd[i] = lst[i];
}
sort(cd + , cd + n + );
for(ll i = ; i <= n + ; i++)
Map[cd[i]] = i;
for(ll i = ; i <= n + ; i++)
lst[i] = Map[lst[i]];
for(ll i = ; i <= m; i++)
{
scanf("%lld%lld", &q[i].l, &q[i].r);
q[i].id = i, q[i].r++;
}
sort(q + , q + m + );
for(ll i = ; i <= m; i++)
{
while(r < q[i].r) cur += ba[lst[++r]]++;
while(l > q[i].l) cur += ba[lst[--l]]++;
while(l < q[i].l) cur -= --ba[lst[l++]];
while(r > q[i].r) cur -= --ba[lst[r--]];
ans[q[i].id] = cur;
}
for(ll i = ; i <= m; i++)
printf("%lld\n", ans[i]);
}
else
{
for(ll i = ; i <= n; i++)
if(!((s[i] - ) % p))
ba[i] = ba[i - ] + , cd[i] = cd[i - ] + i;
else
ba[i] = ba[i - ], cd[i] = cd[i - ];
for(ll i = ; i <= m; i++)
{
scanf("%lld%lld", &l, &r);
printf("%lld\n", cd[r] - cd[l - ] - (ba[r] - ba[l - ]) * (l - ));
}
}
return ;
}

[BZOJ4542] [Hnoi2016] 大数 (莫队)的更多相关文章

  1. bzoj4542 [Hnoi2016]大数 莫队+同余

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4542 题解 我们令 \(f_i\) 表示从 \(i\) 到 \(n\) 位组成的数 \(\bm ...

  2. 【BZOJ4542】[Hnoi2016]大数 莫队

    [BZOJ4542][Hnoi2016]大数 Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个 ...

  3. 【bzoj4542】[Hnoi2016]大数 莫队算法

    题目描述 给出一个数字串,多次询问一段区间有多少个子区间对应的数为P的倍数.其中P为质数. 输入 第一行一个整数:P.第二行一个串:S.第三行一个整数:M.接下来M行,每行两个整数 fr,to,表示对 ...

  4. BZOJ.4542.[HNOI2016]大数(莫队)

    题目链接 大数除法是很麻烦的,考虑能不能将其条件化简 一段区间[l,r]|p,即num[l,r]|p,类似前缀,记后缀suf[i]表示[i,n]的这段区间代表的数字 于是有 suf[l]-suf[r+ ...

  5. 洛谷P3245 [HNOI2016]大数(莫队)

    题意 题目链接 Sol 莫队板子题.. 维护出每个位置开始的字符串\(mod P\)的结果,记为\(S_i\) 两个位置\(l, r\)满足条件当且仅当\(S_l - S_r = 0\),也就是\(S ...

  6. [BZOJ4542] [JZYZOJ2014][Hnoi2016] 大数(莫队+离散化)

    正经题解在最下面 http://blog.csdn.net/qq_32739495/article/details/51286548 写的时候看了大神的题解[就是上面那个网址],看到下面这段话 观察题 ...

  7. bzoj 4542: [Hnoi2016]大数 (莫队)

    Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个 ...

  8. [HNOI2016]序列(莫队,RMQ)

    [HNOI2016]序列(莫队,RMQ) 洛谷  bzoj 一眼看不出来怎么用数据结构维护 然后还没修改 所以考虑莫队 以$(l,r-1) -> (l,r)$为例 对答案的贡献是$\Sigma_ ...

  9. 【莫队】bzoj4542: [Hnoi2016]大数

    挺有意思的,可以仔细体味一下的题:看白了就是莫队板子. Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小 ...

随机推荐

  1. IDEA Default模式下的常用快捷键

    功 能 快 捷 键 备 注 Back Up Ctr + Alt + Left Forword Ctr + Alt + Right Previous Tab Alt + Left Next Tab Al ...

  2. Swift百万线程攻破单例(Singleton)模式

    一.不安全的单例实现 在上一篇文章我们给出了单例的设计模式,直接给出了线程安全的实现方法.单例的实现有多种方法,如下面: class SwiftSingleton { class var shared ...

  3. 在tableViewCell的点击事件中处理界面跳转问题

    UIViewController *controller; UIView *view = self.view; while (1) { controller = (UIViewController * ...

  4. 8、flask之flask-script组件

    Flask Script扩展提供向Flask插入外部脚本的功能,包括运行一个开发用的服务器,一个定制的Python shell,设置数据库的脚本,cronjobs,及其他运行在web应用之外的命令行任 ...

  5. Visual Studio 2017 Enterprise 发布 15.4 版本,离线安装包百度网盘下载。

    Visual Studio 2017 于2017年10月13日发布 15.4 版本.该版本包含多项生产力改进,支持 .NET Standard 2.0 ,并且可以开启 Xamarin Live Pla ...

  6. Hibernate学习(五)lazy属性学习(true和extra区别)

    Lazy(懒加载)在hibernate何处使用:1.<class>标签上,可以取值:true/false,(默认值是:true)2.<property>标签上,可以取值:tru ...

  7. MysqL应该考虑到的安全策略

    1:使用预处理语句防止SQL注入2:写入数据库的数据要进行特殊字符的转义,比如字符中带单引号和双引号需要在应用层转义,这样为了防止SQL注入3:查询的错误信息不要返回给用户,将错误记录到日志.错误信息 ...

  8. nyoj940 A dp problem 打表

    首先枚举i,那么构成i^2的最小值为1个正方形,当然1~1000并不会都得到答案,那么剩下的数字就递增枚举这些数,这个数可能右多对数构成,则枚举这些数.例如 5 = 1 + 4, 5 = 2 + 3, ...

  9. mysql修改记录

    增加一列:alter table bf_agt_dep_acct_sap_sub add column cust_age varchar(10) not null; 改变属性:alter table ...

  10. Netty(二):Netty为啥去掉支持AIO?

    匠心零度 转载请注明原创出处,谢谢! 疑惑 我们都知道bio nio 以及nio2(也就是aio),如果不是特别熟悉可以看看我之前写的网络 I/O模型,那么netty为什么还经常看到类似下面的这段代码 ...