这篇文章的主要贡献点在于:

1.实验证明仅仅利用图像整体的弱标签很难训练出很好的分割模型;

2.可以利用bounding box来进行训练,并且得到了较好的结果,这样可以代替用pixel-level训练中的ground truth;

3.当我们用少量的pixel-level annotations和大量的图像整体的弱标签来进行半监督学习时,其训练效果可和全部使用pixel-level annotations差不多;

4.利用额外的强弱标签可以进一步提高效果。

这是用image-level labels来做的,通过图像的标签对每个像素进行处理,如果该像素的用CNN得到的score map中有该图像标签,则对m位置处的CNN输出做调整并选取其中的最大值作为最新标签,然后用M步中的批量梯度下降法得到新的CNN参数(这个步骤和之前用pixel-level做是一样的),不再需要人工来做大量的工作进行像素级的标定。但是这种方法不太准确,所以用像素级的一部分标签加上图像的标签来进行训练。

这篇文章在DeepLab的基础上进一步研究了使用bounding box和image-level labels作为标记的训练数据。使用了期望值最大化算法(EM)来估计未标记的像素的类别和CNN的参数。

对于image-level标记的数据,我们可以观测到图像的像素值和图像级别的标记,但是不知道每个像素的标号,因此把 当做隐变量。使用如下的概率图模式:

使用EM算法估计。E步骤是固定的期望值,M步骤是固定使用SGD计算

对于给出bounding box标记的训练图像,该方法先使用CRF对该训练图像做自动分割,然后在分割的基础上做全监督学习。通过实验发现,单纯使用图像级别的标记得到的分割效果较差,但是使用bounding box的训练数据可以得到较好的结果,在VOC2012 test数据集上得到mIoU 62.2%。另外如果使用少量的全标记图像和大量的弱标记图像进行结合,可以得到与全监督学习(70.3%)接近的分割结果(69.0%)。

论文笔记(6):Weakly-and Semi-Supervised Learning of a Deep Convolutional Network for Semantic Image Segmentation的更多相关文章

  1. 论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning

    论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning  2017-06-06  21: ...

  2. 【论文笔记】多任务学习(Multi-Task Learning)

    1. 前言 多任务学习(Multi-task learning)是和单任务学习(single-task learning)相对的一种机器学习方法.在机器学习领域,标准的算法理论是一次学习一个任务,也就 ...

  3. 论文笔记-IGCV3:Interleaved Low-Rank Group Convolutions for Efficient Deep Neural Networks

    论文笔记-IGCV3:Interleaved Low-Rank Group Convolutions for Efficient Deep Neural Networks 2018年07月11日 14 ...

  4. 论文学习 :Learning a Deep Convolutional Network for Image Super-Resolution 2014

    (Learning a Deep Convolutional Network for Image Super-Resolution, ECCV2014) 摘要:我们提出了一种单图像超分辨率的深度学习方 ...

  5. Deep Learning: Assuming a deep neural network is properly regulated, can adding more layers actually make the performance degrade?

    Deep Learning: Assuming a deep neural network is properly regulated, can adding more layers actually ...

  6. 论文阅读笔记二十五:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition(SPPNet CVPR2014)

    论文源址:https://arxiv.org/abs/1406.4729 tensorflow相关代码:https://github.com/peace195/sppnet 摘要 深度卷积网络需要输入 ...

  7. SPPNet论文翻译-空间金字塔池化Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    http://www.dengfanxin.cn/?p=403 原文地址 我对物体检测的一篇重要著作SPPNet的论文的主要部分进行了翻译工作.SPPNet的初衷非常明晰,就是希望网络对输入的尺寸更加 ...

  8. 论文笔记 — MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching

    论文:https://github.com/ei1994/my_reference_library/tree/master/papers 本文的贡献点如下: 1. 提出了一个新的利用深度网络架构基于p ...

  9. (论文笔记Arxiv2021)Walk in the Cloud: Learning Curves for Point Clouds Shape Analysis

    目录 摘要 1.引言 2.相关工作 3.方法 3.1局部特征聚合的再思考 3.2 曲线分组 3.3 曲线聚合和CurveNet 4.实验 4.1 应用细节 4.2 基准 4.3 消融研究 5.总结 W ...

随机推荐

  1. Zabbix 3.0 监控Web

    zabbix 界面配置 触发器添加

  2. centos7使用docker部署gitlab-ce-zh应用

    1.国内拉取镜像比较慢,所以这里采用DaoCloud源. # curl -sSL https://get.daocloud.io/daotools/set_mirror.sh | sh -s http ...

  3. linux 获取CPU个数

    #include<stdio.h> #include<unistd.h> int main() { int cpu_num; cpu_num = sysconf(_SC_NPR ...

  4. JDBC数据库操作

    JDBC:   创建SQL语句对象    Statement statement = (Statement) con.createStatement() ;   调用执行     statement. ...

  5. python批量修改文件内容及文件编码方式的处理

    最近公司在做tfs迁移,后面要用新的ip地址去访问tfs 拉取代码  ,所以原来发布脚本中.bat类型的脚本中的的ip地址需要更换 简单说下我们发布脚本层级目录 :每个服务站点下都会有一个发布脚本 . ...

  6. Http请求小结

    1.Http请求:get方式 public void httpGet(String url,Map<String,Object> map) { try { String joint = p ...

  7. R语言︱异常值检验、离群点分析、异常值处理

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:异常值处理一般分为以下几个步骤:异常 ...

  8. zTree实现单独选中根节点中第一个节点

    zTree实现单独选中根节点中第一个节点 1.实现源码 <!DOCTYPE html> <html> <head> <title>zTree实现基本树& ...

  9. JavaScript获取地址栏中的参数

    JavaScript获取地址栏中的参数 1.获取地址栏中的参数 (1)若地址栏中的地址是: http://10.124.36.56:8080/CMOD/index.jsp?name=you&p ...

  10. 序列化Json格式

    Json = JsonUtil.Serialize(new { code = 1, msg = "文件删除成功" }); public class JsonUtil     {   ...