hdu 5909 Tree Cutting [树形DP fwt]
hdu 5909 Tree Cutting
题意:一颗无根树,每个点有权值,连通子树的权值为异或和,求异或和为[0,m)的方案数
\(f[i][j]\)表示子树i中经过i的连通子树异或和为j的方案数
转移类似背包,可以用fwt加速
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int N = (1<<10) + 5, P = 1e9+7, inv2 = (P+1)/2;
inline int read() {
char c=getchar(); int x=0,f=1;
while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
return x*f;
}
int n, m, val[N];
struct edge{int v, ne;} e[N<<1];
int cnt, h[N];
inline void ins(int u, int v) {
e[++cnt] = (edge){v, h[u]}; h[u] = cnt;
e[++cnt] = (edge){u, h[v]}; h[v] = cnt;
}
int f[N][N], ans[N];
void fwt(int *a, int n, int flag) {
for(int l=2; l<=n; l<<=1) {
int m = l>>1;
for(int *p = a; p != a+n; p += l)
for(int k=0; k<m; k++) {
int x = p[k], y = p[k+m];
if(flag == 1) p[k] = (x + y) %P, p[k+m] = (x - y + P) %P;
else p[k] = (ll) (x + y) * inv2 %P, p[k+m] = (ll) (x - y + P) * inv2 %P;
}
}
}
int t[N];
void dp(int u, int fa) {
int *a = f[u]; a[val[u]] = 1; //fwt(a, m, 1);
for(int i=h[u];i;i=e[i].ne) {
int v = e[i].v;
if(v == fa) continue;
dp(v, u); int *b = f[v];
for(int i=0; i<m; i++) t[i] = a[i];
fwt(t, m, 1); fwt(b, m, 1);
for(int i=0; i<m; i++) t[i] = (ll) t[i] * b[i] %P;
fwt(t, m, -1);
for(int i=0; i<m; i++) a[i] = (a[i] + t[i]) %P;
}
for(int i=0; i<m; i++) ans[i] = (ans[i] + a[i]) %P;
}
int main() {
freopen("in", "r", stdin);
int T = read();
while(T--) {
n = read(); m = read();
for(int i=1; i<=n; i++) val[i] = read();
cnt = 0; memset(h, 0, sizeof(h));
for(int i=1; i<n; i++) ins(read(), read());
memset(f, 0, sizeof(f)); memset(ans, 0, sizeof(ans));
dp(1, 0);
for(int i=0; i<m; i++) printf("%d%c", ans[i], i==m-1 ? '\n' : ' ');
}
}
hdu 5909 Tree Cutting [树形DP fwt]的更多相关文章
- HDU - 5909 Tree Cutting (树形dp+FWT优化)
题意:树上每个节点有权值,定义一棵树的权值为所有节点权值异或的值.求一棵树中,连通子树值为[0,m)的个数. 分析: 设\(dp[i][j]\)为根为i,值为j的子树的个数. 则\(dp[i][j\o ...
- HDU.5909.Tree Cutting(树形DP FWT/点分治)
题目链接 \(Description\) 给定一棵树,每个点有权值,在\([0,m-1]\)之间.求异或和为\(0,1,...,m-1\)的非空连通块各有多少个. \(n\leq 1000,m\leq ...
- hdu 5909 Tree Cutting——点分治(树形DP转为序列DP)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5909 点分治的话,每次要做一次树形DP:但时间应该是 siz*m2 的.可以用 FWT 变成 siz*ml ...
- HDU 5909 Tree Cutting 动态规划 快速沃尔什变换
Tree Cutting 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5909 Description Byteasar has a tree T ...
- POJ 2378.Tree Cutting 树形dp 树的重心
Tree Cutting Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4834 Accepted: 2958 Desc ...
- [poj3107/poj2378]Godfather/Tree Cutting树形dp
题意:求树的重心(删除该点后子树最大的最小) 解题关键:想树的结构,删去某个点后只剩下它的子树和原树-此树所形成的数,然后第一次dp求每个子树的节点个数,第二次dp求解答案即可. 此题一开始一直T,后 ...
- HDU 5909 Tree Cutting(FWT+树形DP)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5909 [题目大意] 给出一棵树,其每棵连通子树的价值为其点权的xor和, 问有多少连通子树的价值为 ...
- poj 2378 Tree Cutting 树形dp
After Farmer John realized that Bessie had installed a "tree-shaped" network among his N ( ...
- hdu 5909 Tree Cutting —— 点分治
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5909 点分治,每次的 rt 是必选的点: 考虑必须选根的一个连通块,可以DP,决策就是在每个子树中决定选不 ...
随机推荐
- BZOJ-USACO被虐记
bzoj上的usaco题目还是很好的(我被虐的很惨. 有必要总结整理一下. 1592: [Usaco2008 Feb]Making the Grade 路面修整 一开始没有想到离散化.然后离散化之后就 ...
- dfs学习总结
今天做到了dfs的训练,感觉和bfs有相似之处,接下来用一道题来总结一下方法,可类比bfs. 上题: Description There is a rectangular room, covered ...
- UE4 AsnycTask
使用AsnycTask可以将制定代码放在指定线程中执行,例如更新文理必须放在游戏线程. AsyncTask(ENamedThreads::GameThread, [=](){ updateT ...
- Win7如何分享局域网并设置共享文件夹账户和密码
https://jingyan.baidu.com/article/ceb9fb10ddf6c08cad2ba017.html 在办公或者其他场所,我们需要分享自己的文件给朋友或者同事,但又不想同一局 ...
- 【开发技术】对文件内容进行加密-java
http://hi.baidu.com/java0804ms/item/111ea834fbd4d2f596f88d5a 实现效果:对文件内容进行加密,使之直接打开成为乱码,不以明文显示 实现步骤:1 ...
- MYSQL ORDER BY Optimization
ORDER BY Optimization 某些情况下,MYSQL可以使用index排序而避免额外的sorting. 即使order by语句列不能准确的匹配index,只要没有index中(不在or ...
- MyEclipse或Eclipse导出JavaDoc中文乱码问题解决
- linux_定时任务
什么是定时任务? linux系统自身定期执行的任务和工作: 轮训系统日志.备份系统数据.清理缓存等 var/log/messages # 系统日志文件, ll /etc/|grep cron # 查询 ...
- 数据库分表之Mybatis+Mysql实践(含部分关键代码)
2018年01月31日 随着我们系统用户数量的日增,业务数据处于一个爆发前,增长的数据量已经给我们的系统造成了很大的不确定.在上个周末用户量较多,并发较大的情况下,读写频繁的验证码表,数据量 ...
- Servlet--Servlet接口
servlet主要数据结构 Servlet 接口:主要定义了servlet的生命周期方法 ServletConfig接口:为servlet提供了使用容器服务的若干重要对象和方法. ServletCon ...