LDA主题模型
(一)LDA作用
传统判断两个文档相似性的方法是通过查看两个文档共同出现的单词的多少,如TF-IDF等,这种方法没有考虑到文字背后的语义关联,可能在两个文档共同出现的单词很少甚至没有,但两个文档是相似的。
举个例子,有两个句子分别如下:
“乔布斯离我们而去了。”
“苹果价格会不会降?”
可以看到上面这两个句子没有共同出现的单词,但这两个句子是相似的,如果按传统的方法判断这两个句子肯定不相似,所以在判断文档相关性的时候需要考虑到文档的语义,而语义挖掘的利器是主题模型,LDA就是其中一种比较有效的模型。
在主题模型中,主题表示一个概念、一个方面,表现为一系列相关的单词,是这些单词的条件概率。形象来说,主题就是一个桶,里面装了出现概率较高的单词,这些单词与这个主题有很强的相关性。
怎样才能生成主题?对文章的主题应该怎么分析?这是主题模型要解决的问题。
首先,可以用生成模型来看文档和主题这两件事。所谓生成模型,就是说,我们认为一篇文章的每个词都是通过“以一定概率选择了某个主题,并从这个主题中以一定概率选择某个词语”这样一个过程得到的。那么,如果我们要生成一篇文档,它里面的每个词语出现的概率为:
这个概率公式可以用矩阵表示:
其中”文档-词语”矩阵表示每个文档中每个单词的词频,即出现的概率;”主题-词语”矩阵表示每个主题中每个单词的出现概率;”文档-主题”矩阵表示每个文档中每个主题出现的概率。
给定一系列文档,通过对文档进行分词,计算各个文档中每个单词的词频就可以得到左边这边”文档-词语”矩阵。主题模型就是通过左边这个矩阵进行训练,学习出右边两个矩阵。
主题模型有两种:pLSA(ProbabilisticLatent Semantic Analysis)和LDA(Latent Dirichlet Allocation),下面主要介绍LDA。
(二)LDA介绍
如何生成M份包含N个单词的文档,LatentDirichlet Allocation这篇文章介绍了3方法:
方法一:unigram model
该模型使用下面方法生成1个文档:
For each ofthe N words w_n:
Choose a word w_n ~ p(w);
其中N表示要生成的文档的单词的个数,w_n表示生成的第n个单词w,p(w)表示单词w的分布,可以通过语料进行统计学习得到,比如给一本书,统计各个单词在书中出现的概率。
这种方法通过训练语料获得一个单词的概率分布函数,然后根据这个概率分布函数每次生成一个单词,使用这个方法M次生成M个文档。其图模型如下图所示:
方法二:Mixture of unigram
unigram模型的方法的缺点就是生成的文本没有主题,过于简单,mixture of unigram方法对其进行了改进,该模型使用下面方法生成1个文档:
Choose a topicz ~ p(z);
For each ofthe N words w_n:
Choose a word w_n ~ p(w|z);
其中z表示一个主题,p(z)表示主题的概率分布,z通过p(z)按概率产生;N和w_n同上;p(w|z)表示给定z时w的分布,可以看成一个k×V的矩阵,k为主题的个数,V为单词的个数,每行表示这个主题对应的单词的概率分布,即主题z所包含的各个单词的概率,通过这个概率分布按一定概率生成每个单词。
这种方法首先选选定一个主题z,主题z对应一个单词的概率分布p(w|z),每次按这个分布生成一个单词,使用M次这个方法生成M份不同的文档。其图模型如下图所示:
从上图可以看出,z在w所在的长方形外面,表示z生成一份N个单词的文档时主题z只生成一次,即只允许一个文档只有一个主题,这不太符合常规情况,通常一个文档可能包含多个主题。
方法三:LDA(Latent Dirichlet Allocation)
LDA方法使生成的文档可以包含多个主题,该模型使用下面方法生成1个文档:
Chooseparameter θ ~ p(θ);
For each ofthe N words w_n:
Choose a topic z_n ~ p(z|θ);
Choose a word w_n ~ p(w|z);
其中θ是一个主题向量,向量的每一列表示每个主题在文档出现的概率,该向量为非负归一化向量;p(θ)是θ的分布,具体为Dirichlet分布,即分布的分布;N和w_n同上;z_n表示选择的主题,p(z|θ)表示给定θ时主题z的概率分布,具体为θ的值,即p(z=i|θ)= θ_i;p(w|z)同上。
这种方法首先选定一个主题向量θ,确定每个主题被选择的概率。然后在生成每个单词的时候,从主题分布向量θ中选择一个主题z,按主题z的单词概率分布生成一个单词。其图模型如下图所示:
从上图可知LDA的联合概率为:
把上面的式子对应到图上,可以大致按下图理解:
从上图可以看出,LDA的三个表示层被三种颜色表示出来:
1. corpus-level(红色):α和β表示语料级别的参数,也就是每个文档都一样,因此生成过程只采样一次。
2.document-level(橙色):θ是文档级别的变量,每个文档对应一个θ,也就是每个文档产生各个主题z的概率是不同的,所有生成每个文档采样一次θ。
3. word-level(绿色):z和w都是单词级别变量,z由θ生成,w由z和β共同生成,一个 单词w对应一个主题z。
通过上面对LDA生成模型的讨论,可以知道LDA模型主要是从给定的输入语料中学习训练两个控制参数α和β,学习出了这两个控制参数就确定了模型,便可以用来生成文档。其中α和β分别对应以下各个信息:
α:分布p(θ)需要一个向量参数,即Dirichlet分布的参数,用于生成一个主题θ向量;
β:各个主题对应的单词概率分布矩阵p(w|z)。
把w当做观察变量,θ和z当做隐藏变量,就可以通过EM算法学习出α和β,求解过程中遇到后验概率p(θ,z|w)无法直接求解,需要找一个似然函数下界来近似求解,原文使用基于分解(factorization)假设的变分法(varialtional inference)进行计算,用到了EM算法。每次E-step输入α和β,计算似然函数,M-step最大化这个似然函数,算出α和β,不断迭代直到收敛。
参考文献:
David M. Blei, AndrewY. Ng, Michael I. Jordan,
LatentDirichlet Allocation, Journal of Machine Learning Research 3, p993-1022,2003
【JMLR’03】Latent Dirichlet Allocation (LDA)- David M.Blei
http://bbs.byr.cn/#!article/PR_AI/2530?p=1
LDA主题模型的更多相关文章
- Gensim LDA主题模型实验
本文利用gensim进行LDA主题模型实验,第一部分是基于前文的wiki语料,第二部分是基于Sogou新闻语料. 1. 基于wiki语料的LDA实验 上一文得到了wiki纯文本已分词语料 wiki.z ...
- [综] Latent Dirichlet Allocation(LDA)主题模型算法
多项分布 http://szjc.math168.com/book/ebookdetail.aspx?cateid=1&§ionid=983 二项分布和多项分布 http:// ...
- 用scikit-learn学习LDA主题模型
在LDA模型原理篇我们总结了LDA主题模型的原理,这里我们就从应用的角度来使用scikit-learn来学习LDA主题模型.除了scikit-learn, 还有spark MLlib和gensim库 ...
- R语言︱LDA主题模型——最优主题数选取(topicmodels)+LDAvis可视化(lda+LDAvis)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:在自己学LDA主题模型时候,发现该模 ...
- Spark:聚类算法之LDA主题模型算法
http://blog.csdn.net/pipisorry/article/details/52912179 Spark上实现LDA原理 LDA主题模型算法 [主题模型TopicModel:隐含狄利 ...
- R语言︱LDA主题模型——最优主题...
R语言︱LDA主题模型——最优主题...:https://blog.csdn.net/sinat_26917383/article/details/51547298#comments
- 自然语言处理之LDA主题模型
1.LDA概述 在机器学习领域,LDA是两个常用模型的简称:线性判别分析(Linear Discriminant Analysis)和 隐含狄利克雷分布(Latent Dirichlet Alloca ...
- 机器学习入门-文本特征-使用LDA主题模型构造标签 1.LatentDirichletAllocation(LDA用于构建主题模型) 2.LDA.components(输出各个词向量的权重值)
函数说明 1.LDA(n_topics, max_iters, random_state) 用于构建LDA主题模型,将文本分成不同的主题 参数说明:n_topics 表示分为多少个主题, max_i ...
- 理解 LDA 主题模型
前言 gamma函数 0 整体把握LDA 1 gamma函数 beta分布 1 beta分布 2 Beta-Binomial 共轭 3 共轭先验分布 4 从beta分布推广到Dirichlet 分布 ...
- 机器学习入门-贝叶斯构造LDA主题模型,构造word2vec 1.gensim.corpora.Dictionary(构造映射字典) 2.dictionary.doc2vec(做映射) 3.gensim.model.ldamodel.LdaModel(构建主题模型)4lda.print_topics(打印主题).
1.dictionary = gensim.corpora.Dictionary(clean_content) 对输入的列表做一个数字映射字典, 2. corpus = [dictionary,do ...
随机推荐
- J2EE进阶(十六)Hibernate 中getHibernateTemplate()方法使用
J2EE进阶(十六)Hibernate 中getHibernateTemplate()方法使用 spring 中获得由spring所配置的hibernate的操作对象,然后利用此对象进行,保存,修 ...
- 剑指Offer——知识点储备-J2EE基础
剑指Offer--知识点储备-J2EE基础 9.2 jdk 1.8的新特性(核心是Lambda 表达式) 参考链接:http://www.bubuko.com/infodetail-690646.ht ...
- Picasso 完美兼容 OkHttp3.3,缓存优化两不误
Tamic 专注移动开发!更多文章请关注http://www.jianshu.com/p/6241950f9daf csdn: http://blog.csdn.net/sk719887916/art ...
- Python 3 re模块3个括号相关的语法
(?aiLmsux) (One or more letters from the set 'a', 'i', 'L', 'm', 's', 'u', 'x'.) The group matches t ...
- Eclipse简介和使用技巧快捷方式
1Eclipse简介和使用 IDE(Integrated Development Environment ): 集成开发环境,集合开发.运行.调试于一体的一个软件 Eclipse 是一个开放源代码的. ...
- FORM当前状态分析
变量 SYSTEM.RECORD_STATUS 确定当前记录状态.有四种返回值:CHANGED表示记录从数据库取来,并且该记录至少一个基表列被更新:INSERT表示给一个非取自数据库记录的基表 ...
- memcached实战系列(三)memcached命令使用
memcached命令的使用,在这里我们最好了解一下命令的含义,对命令有一个大致的了解,在了解的基础上进行使用.这里的命名是常用的crud命令的演示. 1.1.1. memcached命令的格式 标准 ...
- 迎战大数据-Oracle篇
来自:http://www.cnblogs.com/wenllsz/archive/2012/11/16/2774205.html 了解大数据带来的机遇: 透视架构与工具: 开源节流,获得竞争优势. ...
- 上海C++游戏服务器群活动PPT下载
下载页面: http://download.csdn.net/download/jq0123/8227519 跨服与跨区的设计PPT 上海C++游戏服务器群 2014.11.9 沙龙讲义. 自我介绍 ...
- 银联在线 网关支付 (JAVA版)
这一版本的编写是在我上一次博客的基础上写的,有不懂得童鞋可以先看下我的原先在线支付的博客,熟悉下:http://blog.csdn.net/yulei_qq/article/details/45197 ...