reference:

GAN 讲解

https://blog.csdn.net/u010900574/article/details/53427544

命令行解析

https://blog.csdn.net/qq_24193303/article/details/80810892

命令行解析的坑

https://blog.csdn.net/qq_25964837/article/details/79077504

注意其内部参数

from __future__ import print_function
from keras.preprocessing.image import load_img, save_img, img_to_array
import numpy as np
from scipy.optimize import fmin_l_bfgs_b
import time
import argparse from keras.applications import vgg19
from keras import backend as K parser = argparse.ArgumentParser(description='Neural style transfer with Keras.')
parser.add_argument('base_image_path', metavar='base', type=str,
help='Path to the image to transform.')
parser.add_argument('style_reference_image_path', metavar='ref', type=str,
help='Path to the style reference image.')
parser.add_argument('result_prefix', metavar='res_prefix', type=str,
help='Prefix for the saved results.')
parser.add_argument('--iter', type=int, default=10, required=False,
help='Number of iterations to run.')
parser.add_argument('--content_weight', type=float, default=0.025, required=False,
help='Content weight.')
parser.add_argument('--style_weight', type=float, default=1.0, required=False,
help='Style weight.')
parser.add_argument('--tv_weight', type=float, default=1.0, required=False,
help='Total Variation weight.')
(base) C:\Users\lenovo>activate tf

(tf) C:\Users\lenovo>d
'd' 不是内部或外部命令,也不是可运行的程序
或批处理文件。 (tf) C:\Users\lenovo>d: (tf) D:\>D:\adevelop\keras\GAN\keras-master\examples
'D:\adevelop\keras\GAN\keras-master\examples' 不是内部或外部命令,也不是可运行的程序
或批处理文件。 (tf) D:\>cd D:\adevelop\keras\GAN\keras-master\examples (tf) D:\adevelop\keras\GAN\keras-master\examples>python neural_style_transfer.py "D:\\adevelop\\keras\\img\\tanm.jpg" "D:\\adevelop\\keras\\img\\vonga.jpg" "D:\\adevelop\\keras\\img\\tiananmen_fangao"
Using TensorFlow backend.
Downloading data from https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5
forrtl: error (): program aborting due to control-C event
Image PC Routine Line Source
libifcoremd.dll 00007FFBBCFB94C4 Unknown Unknown Unknown
KERNELBASE.dll 00007FFC07A656FD Unknown Unknown Unknown
KERNEL32.DLL 00007FFC089C3034 Unknown Unknown Unknown
ntdll.dll 00007FFC0AF93691 Unknown Unknown Unknown (tf) D:\adevelop\keras\GAN\keras-master\examples>python neural_style_transfer.py "D:\\adevelop\\keras\\img\\tanm.jpg" "D:\\adevelop\\keras\\img\\vonga.jpg" "D:\\adevelop\\keras\\img\\tiananmen_fangao"
Using TensorFlow backend.
Downloading data from https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5
/ [==============================] - 27s 0us/step
-- ::22.912925: I tensorflow/core/platform/cpu_feature_guard.cc:] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX AVX2
-- ::23.111711: I tensorflow/core/common_runtime/gpu/gpu_device.cc:] Found device with properties:
name: GeForce GTX 6GB major: minor: memoryClockRate(GHz): 1.7845
pciBusID: ::00.0
totalMemory: .00GiB freeMemory: .97GiB
-- ::23.115455: I tensorflow/core/common_runtime/gpu/gpu_device.cc:] Adding visible gpu devices:
-- ::23.474086: I tensorflow/core/common_runtime/gpu/gpu_device.cc:] Device interconnect StreamExecutor with strength edge matrix:
-- ::23.476305: I tensorflow/core/common_runtime/gpu/gpu_device.cc:]
-- ::23.477352: I tensorflow/core/common_runtime/gpu/gpu_device.cc:] : N
-- ::23.479132: I tensorflow/core/common_runtime/gpu/gpu_device.cc:] Created TensorFlow device (/job:localhost/replica:/task:/device:GPU: with MB memory) -> physical GPU (device: , name: GeForce GTX 6GB, pci bus id: ::00.0, compute capability: 6.1)
Model loaded.
WARNING:tensorflow:Variable += will be deprecated. Use variable.assign_add if you want assignment to the variable value or 'x = x + y' if you want a new python Tensor object.
Start of iteration
Current loss value: 4708729000.0
Image saved as D:\\adevelop\\keras\\img\\tiananmen_fangao_at_iteration_0.png
Iteration completed in 12s
Start of iteration
Current loss value: 2911683000.0
Image saved as D:\\adevelop\\keras\\img\\tiananmen_fangao_at_iteration_1.png
Iteration completed in 9s
Start of iteration
Current loss value: 2555891200.0
Image saved as D:\\adevelop\\keras\\img\\tiananmen_fangao_at_iteration_2.png
Iteration completed in 9s
Start of iteration
Current loss value: 2370041300.0
Image saved as D:\\adevelop\\keras\\img\\tiananmen_fangao_at_iteration_3.png
Iteration completed in 9s
Start of iteration
Current loss value: 2268962800.0
Image saved as D:\\adevelop\\keras\\img\\tiananmen_fangao_at_iteration_4.png
Iteration completed in 9s
Start of iteration
Current loss value: 2198608600.0
Image saved as D:\\adevelop\\keras\\img\\tiananmen_fangao_at_iteration_5.png
Iteration completed in 9s
Start of iteration
Current loss value: 2155104300.0
Image saved as D:\\adevelop\\keras\\img\\tiananmen_fangao_at_iteration_6.png
Iteration completed in 9s
Start of iteration
Current loss value: 2122974200.0
Image saved as D:\\adevelop\\keras\\img\\tiananmen_fangao_at_iteration_7.png
Iteration completed in 9s
Start of iteration
Current loss value: 2096054800.0
Image saved as D:\\adevelop\\keras\\img\\tiananmen_fangao_at_iteration_8.png
Iteration completed in 9s
Start of iteration
Current loss value: 2074734200.0
Image saved as D:\\adevelop\\keras\\img\\tiananmen_fangao_at_iteration_9.png
Iteration completed in 9s (tf) D:\adevelop\keras\GAN\keras-master\examples>

keras04 GAN simple的更多相关文章

  1. (转) Read-through: Wasserstein GAN

    Sorta Insightful Reviews Projects Archive Research About  In a world where everyone has opinions, on ...

  2. [转]GAN论文集

    really-awesome-gan A list of papers and other resources on General Adversarial (Neural) Networks. Th ...

  3. GAN实战笔记——第六章渐进式增长生成对抗网络(PGGAN)

    渐进式增长生成对抗网络(PGGAN) 使用 TensorFlow和 TensorFlow Hub( TFHUB)构建渐进式增长生成对抗网络( Progressive GAN, PGGAN或 PROGA ...

  4. PHP设计模式(一)简单工厂模式 (Simple Factory For PHP)

    最近天气变化无常,身为程序猿的寡人!~终究难耐天气的挑战,病倒了,果然,程序猿还需多保养自己的身体,有句话这么说:一生只有两件事能报复你:不够努力的辜负和过度消耗身体的后患.话不多说,开始吧. 一.什 ...

  5. Design Patterns Simplified - Part 3 (Simple Factory)【设计模式简述--第三部分(简单工厂)】

    原文链接:http://www.c-sharpcorner.com/UploadFile/19b1bd/design-patterns-simplified-part3-factory/ Design ...

  6. WATERHAMMER: A COMPLEX PHENOMENON WITH A SIMPLE SOLUTION

    开启阅读模式 WATERHAMMER A COMPLEX PHENOMENON WITH A SIMPLE SOLUTION Waterhammer is an impact load that is ...

  7. BZOJ 3489: A simple rmq problem

    3489: A simple rmq problem Time Limit: 40 Sec  Memory Limit: 600 MBSubmit: 1594  Solved: 520[Submit] ...

  8. Le lié à la légèreté semblait être et donc plus simple

    Il est toutefois vraiment à partir www.runmasterfr.com/free-40-flyknit-2015-hommes-c-1_58_59.html de ...

  9. ZOJ 3686 A Simple Tree Problem

    A Simple Tree Problem Time Limit: 3 Seconds      Memory Limit: 65536 KB Given a rooted tree, each no ...

随机推荐

  1. 用ASP.NET Core 2.1 建立规范的 REST API -- 翻页/排序/过滤等

    本文所需的一些预备知识可以看这里: http://www.cnblogs.com/cgzl/p/9010978.html 和 http://www.cnblogs.com/cgzl/p/9019314 ...

  2. Python学习曲线

    经历长达近一个月的资源筛选过程终于结束,总共1.5T百度网盘的资源经过:去重.筛选.整理.归档之后一份粗略的Python学习曲线资源已经成型,虽然中间经历了很多坎坷,不过最终还是完成,猪哥也是第一时间 ...

  3. 网络协议 16 - DNS 协议:网络世界的地址簿

    [前五篇]系列文章传送门: 网络协议 11 - Socket 编程(下):眼见为实耳听为虚 网络协议 12 - HTTP 协议:常用而不简单 网络协议 13 - HTTPS 协议:加密路上无尽头 网络 ...

  4. 【Android Studio安装部署系列】五、新建你的第一个项目:HelloWorld

    版权声明:本文为HaiyuKing原创文章,转载请注明出处! 概述 新建项目的步骤. 开始创建项目 如果是刚安装Android studio的话,点击Start a new Android Studi ...

  5. HttpUtil 【判断网络连接的封装类】

    版权声明:本文为HaiyuKing原创文章,转载请注明出处! 前言 该封装类主要包括以下功能: 判断是否有网络连接.判断是否有可用的网络连接: 判断是否是3G网络.判断mobile网络是否可用: 判断 ...

  6. LitepalNewDemo【开源数据库ORM框架-LitePal2.0.0版本的使用】

    版权声明:本文为HaiyuKing原创文章,转载请注明出处! 前言 本Demo使用的是LitePal2.0.0版本,对于旧项目如何升级到2.0.0版本,请阅读<赶快使用LitePal 2.0版本 ...

  7. Node.js 命令行工具的编写

    日常开发中,编写 Node.js 命令行工具来完成一些小任务是很常见的操作.其编写也不难,和日常编写 Node.js 代码并无二致. package.json 中的 bin 字段 一个 npm 模块, ...

  8. centos7 安装 smplayer

    How to setup multimedia on CentOS 7 You will need to also install the EPEL repository as nux-dextop ...

  9. JCE安装使用报错

    "description":"No key was installed for encryption service","status":& ...

  10. [Nodejs] 用node写个爬虫

    寻找爬取的目标 首先我们需要一个坚定的目标,于是找个一个比较好看一些网站,将一些信息统计一下,比如 url/tag/title/number...等信息 init(1, 2); //设置页数,现在是1 ...