SPOJ DIVCNT2

题目大意:

求\(S2(n)=\sum_{i=1}^{n}\sigma_0{(i^2)}\) 。

题解

我们可以先考虑括号里只有一个\(i\)的情况,这样,我们把\(i\)分解质因数为$p_1{a_1}*p_2{a_2}...p_k^{a_k} $。

那么这就是一个经典的问题,答案为

\[\sum_{i-1}^n \prod_{j=1}^{k}(a_j+1)
\]

现在\(i\)变成了\(i^2\)那么无非就是每个质因子的指数乘以2,所以答案就是:

\[\sum_{i-1}^n \prod_{j=1}^{k}(2a_j+1)
\]

这是一堆二项式乘起来的形式,每一个质因子可以选或不选,考虑每一种方案是往\(2a_j\)去还是往1那边去,我们可以枚举一个往\(2a_j\)去的质因子集合,那么这时候的方案数就是\(\prod_{j}2a_j\)。

如果我们把里面的那个2提出来的话,那么这就是一个枚举所有的\(>0\)的\(a_j\)也就是枚举约数的过程,考虑对于每个约数,因为刚才我们把2提出来了,它的前面还乘上了\(2^{集合大小}\),这里的集合大小就是这个数的质因子个数,所以我们最后的答案就是:

\[\sum_{i=1}^{n}\sum_{d|n}2^{w(d)}
\]

如果我们把\(w(d)\)看做每个质因数选或者不选,那么这个就是\(d\)的无平方因子的约数个数,考虑\(\mu\)函数的平方,如果这个数有平方因子那么就为0,否则就为1,所以答案变成:

\[\sum_{i=1}^n\sum_{d|n}\sum_{x|d}\mu^2(x)
\]

然后我们把枚举\(x\)的部分提前,那么我们就需要考虑每个\(x\)的倍数i有多少个约数也是\(i\)的倍数,那么就是:

\[\sum_{i-1}^n\mu^2(i)\sum_{j-1}^{\lfloor n/i\rfloor}\sigma_0(j)
\]

到这里做法就可以出来了,它是一个\(f(i)*g(\lfloor n/i\rfloor)\)的形式,所以我们可以对其除法分块,然后我们还要知道\(\mu^2\)和\(\sigma_0\)的前缀和,求\(\sigma_0\)的部分比较简单,可以直接枚举约数。

\[\sum_{i=1}^n\sigma_0(i)=\sum_{i=1}^m\lfloor \frac{n}{i}\rfloor
\]

对于\(\mu^2\)的前缀和,我们可以考虑枚举每个平方因子进行容斥:

\[\sum_{i-1}^{\sqrt{n}}\mu(i) \times \lfloor \frac{n}{i^2}\rfloor
\]

这样每个有平方因子的数刚好被算了0次,无平方因子的数刚好被算了一次。

然后就是外层除法分块,内层也有一个除法分块和枚举平方因子求\(\mu^2\)和、\(\sigma_0\)的前缀和,我们可以通过一些预处理前缀和来降低后面枚举的复杂度。

代码

#include<iostream>
#include<cstdio>
#define N 5000009
using namespace std;
typedef long long ll;
const int maxn=5e6;
int miu[N],prime[N],sum[N],d[N],ci[N];
ll sumd[N];
bool vis[N];
inline ll rd(){
ll x=0;char c=getchar();bool f=0;
while(!isdigit(c)){if(c=='-')f=1;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
return f?-x:x;
}
inline void prework(){
int k;
miu[1]=1;d[1]=1;
for(int i=2;i<=maxn;++i){
if(!vis[i]){prime[++prime[0]]=i;miu[i]=-1;ci[i]=1;d[i]=2;}
for(int j=1;j<=prime[0]&&(k=i*prime[j])<=maxn;++j){
vis[k]=1;ci[k]=1;d[k]=2;
if(i%prime[j]==0){ci[k]+=ci[i];d[k]=d[i]*(ci[k]+1)/ci[k];break;}
miu[k]=-miu[i];d[k]=d[i]<<1;
}
}
for(int i=1;i<=maxn;++i)sum[i]=sum[i-1]+miu[i]*miu[i],sumd[i]=sumd[i-1]+d[i];
}
inline ll calc(ll n){
if(n<=maxn)return sumd[n];
ll r,ans=0;
for(ll l=1;l<=n;l=r+1){
r=n/(n/l);
ans+=(n/l)*(r-l+1);
}
return ans;
}
inline ll calcsum(ll n){
if(n<=maxn)return sum[n];
ll ans=0;
for(ll i=1;i*i<=n;++i){
ans+=(n/(i*i))*miu[i];
}
return ans;
}
inline ll get(ll n){
ll ans=0;ll r;
for(ll l=1;l<=n;l=r+1){
r=n/(n/l);
ans+=calc(n/l)*(calcsum(r)-calcsum(l-1));
}
return ans;
}
int main(){
int T=rd();
prework();
while(T--){
ll n=rd();
printf("%lld\n",get(n));
}
return 0;
}

SPOJ DIVCNT2的更多相关文章

  1. SPOJ DIVCNT2 [我也不知道是什么分类了反正是数论]

    SPOJ DIVCNT2 - Counting Divisors (square) 题意:求 \[ \sum_{i=1}^n\sigma_0(i^2) \] 好棒啊! 带着平方没法做,考虑用其他函数表 ...

  2. 【胡策篇】题解 (UOJ 192 + CF938G + SPOJ DIVCNT2)

    和泉纱雾与烟花大会 题目来源: UOJ 192 最强跳蚤 (只改了数据范围) 官方题解: 在这里哦~(说的很详细了 我都没啥好说的了) 题目大意: 求树上各边权乘积是完全平方数的路径数量. 这种从\( ...

  3. SPOJ : DIVCNT2 - Counting Divisors (square)

    设 \[f(n)=\sum_{d|n}\mu^2(d)\] 则 \[\begin{eqnarray*}\sigma_0(n^2)&=&\sum_{d|n}f(d)\\ans&= ...

  4. [SPOJ] DIVCNT2 - Counting Divisors (square) (平方的约数个数前缀和 容斥 卡常)

    题目 vjudge URL:Counting Divisors (square) Let σ0(n)\sigma_0(n)σ0​(n) be the number of positive diviso ...

  5. Min_25 筛小结

    Min_25 筛这个东西,完全理解花了我很长的时间,所以写点东西来记录一些自己的理解. 它能做什么 对于某个数论函数 \(f\),如果满足以下几个条件,那么它就可以用 Min_25 筛来快速求出这个函 ...

  6. [51Nod 1222] - 最小公倍数计数 (..怎么说 枚举题?)

    题面 求∑k=ab∑i=1k∑j=1i[lcm(i,j)==k]\large\sum_{k=a}^b\sum_{i=1}^k\sum_{j=1}^i[lcm(i,j)==k]k=a∑b​i=1∑k​j ...

  7. SPOJ 20713 DIVCNT2 - Counting Divisors (square)

    DIVCNT2 - Counting Divisors (square) #sub-linear #dirichlet-generating-function Let \sigma_0(n)σ​0​​ ...

  8. SPOJ divcntk(min25筛)

    题意 \(\sigma_0(i)\) 表示 \(i\) 的约数个数 求 \[ S_k(n)=\sum_{i=1}^n\sigma_0(i^k)\pmod {2^{64}} \] 共 \(T\) 组数据 ...

  9. DIVCNT2&&3 - Counting Divisors

    DIVCNT2 - Counting Divisors (square) DIVCNT3 - Counting Divisors (cube) 杜教筛 [学习笔记]杜教筛 (其实不算是杜教筛,类似杜教 ...

随机推荐

  1. K2开发中,遇到用户无权限OPEN当前的待办

    1.用户有的时候在做操作时,提示用户没有权限OPEN当前流程,需要注意判断当前用户是K2标签还是K2SQL标签.如果标签不对,会导致当前问题的发生 后续如果再有碰到,再补充吧

  2. 26 , CSS 构造表单

    1. 表单标签使用 2. 下拉菜单背景 3. 滚动条的使用 4. 结构化表单布局 1 1 1 1. . . . 表单标签的使用 <label for=”name”>姓名: <inpu ...

  3. QC API全系列揭秘之Test Execution操作(全网首发)

    (原创文章,转载请注明出处.) 一.QC简介: Quality Center存在至今已经走过了10多个年头,名字从一开始的TD,到后来的QC,再到现在的ALM.所属公司从开始的Mercury到现在的H ...

  4. 如何知道一个EXE使用什么开发语言开发的

    一般是看EXE调用哪些DLL,这可以使用VC++中的工具Dependency Walker,它可以列出静态链接的所有DLL. 如果EXE中的DLL包括MSVBVM60.DLL,则是使用VB 6.0开发 ...

  5. lodash源码分析之去重--uniq方法

    lodash.js包是node开发中常用的js工具包,里面有许多实用的方法,今天分析常用的一个去重方法---uniq 用法 _.uniq([2, 1, 2]) // => [2, 1] 源码包 ...

  6. php分页数据最后一页继续追加第一页数据

    之前做数据分页遇到这样一个需求,就是数据到最后一页的时候不能中断,继续把第一页的数据追加到后面,无限显示下去. 原文地址:代码汇个人博客 http://www.codehui.net/info/23. ...

  7. CentOS 7 MySql 解压版安装配置

    下载 访问www.mysql.com 点击DOWNLOADS-->Community-->MySQL Community Server 选择要下载的版本,目前可选择的有:5.5.5.6.5 ...

  8. Python开发【框架篇】Django的Form组件

    Django的Form主要具有一下几大功能: 生成HTML标签 验证用户数据(显示错误信息) HTML Form提交保留上次提交数据 初始化页面显示内容 小试牛刀 1.创建Form类 from dja ...

  9. WEB 性能测试用例设计以及总结

    WEB 性能测试用例设计以及总结 WEB 性能测试用例设计模型是设计性能测试用例的一个框架,在实际项目中,需要对其进行适当的剪裁,从而确定性能测试用例的范围和类别.剪裁的依据是性能测试策略和测试范围, ...

  10. python day07

    数据类型之间的相互转换 1.字符串转换成数字类型 判断哪些可以转换成数字型可以参考下面例题: # 判断实现将所有能转换为数字类型的字符串都转换为对应类型的数字# int: '10' = > 10 ...